

Lucas do Rio Verde, MT Agosto, 2015

Autores

Rodrigo Pengo Rosa, M. Sc.

Engenheiro Agrônomo Fundação Rio Verde, MT rodrigopengo@fundacaorioverde.com.br

Fabio Kempim Pittelkow, D. Sc.

Engenheiro Agrônomo Fundação Rio Verde, MT fabio@fundacaorioverde.com.br

Rodrigo Marcelo Pasqualli

Engenheiro Agrônomo Fundação Rio Verde, MT rodrigo@fundacaorioverde.com.br

Objetivo

Avaliar o potencial produtivo de diversos híbridos de milho na segunda safra de 2015 em dois níveis de tecnologia em Lucas do Rio Verde, MT.

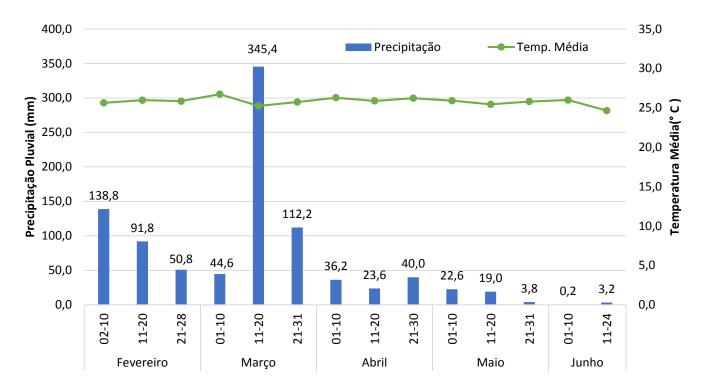
Material e Métodos

O experimento foi instalado nas dependências da Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde, localizada entre as coordenadas geográficas 13°00′27″ S - 55°58′07″ W e 12°59′34″ S - 55°57′50″ W, com altitude média de 387 metros, no município de Lucas do Rio Verde - MT, em um LATOSSOLO VERMELHO Amarelo distrófico de textura argilosa, em semeadura direta sob palhada residual da cultura da soja.

O semeio foi realizado no dia 12 de fevereiro de 2015 no espaçamento de 0,45 metros entre linhas com 50 híbridos de milho disponíveis para cultivos comerciais na região (Tabela 01), implantados sob dois níveis de fertilização, um de Média Tecnologia com aplicação de 200 kg ha⁻¹ do formulado 20-00-20 no estádio V3-V4 da cultura e outro de Alta Tecnologia com aplicação de 300 kg ha⁻¹ do formulado 08-20-20 no sulco de semeio, com adubação de cobertura de 70 kg ha⁻¹ de Ureia no estádio V3-V4 e uma segunda aplicação em cobertura com 130 kg ha⁻¹ de Ureia no estádio V6.

Foi utilizado o delineamento inteiramente casualizado, no esquema fatorial 2x50, sendo 2 níveis de adubação e 50 híbridos de

milho, com quatro repetições. Cada parcela foi composta com 4 linhas de plantio por 5,0 metros de comprimento, totalizando 9,0 m² por parcela. Os tratamentos empregados no experimento estão descritos na Tabela 1.


Tabela 1. Descrição dos tratamentos utilizados no experimento com a cultura do milho em Lucas do Rio Verde, MT, 2015.

Empresa	Híbrido
Agroceres	AG 7088 RR2
Agroceres	AG 8088 PRO X
Agroceres	AG 8580 PRO X
Agroeste	AS 1633 PRO2
Agroeste	AS 1652 PRO 2
Agroeste	AS 1656 PRO 2
Agroeste	AS 1656 PRO3
Balu	280 PRO
Balu	Syn7E28 TLTG VIP
BioGene	BG 7032 H
BioGene	BG 7037 H
BioGene	BG 7439 H
Coodetec	CD 3770 PW
Coodetec	CD 384 PW
Dekalb	DKB 290 PRO3
Dekalb	DKB 390 PRO2
Dow	2B512 PW
Dow	2B610 PW
Dow	2B633 PW
Dow	2B810 PW
DiSolo	Ipanema
DiSolo	Copacabana
DiSolo	DSS 1001
DiSolo	Mucuripe

Empresa	Híbrido
Jmen	2M55
Jmen	2M70
Jmen	2M77
Jmen	2M80
Jmen	2M90
Jmen	3M40
Jmen	4M50
Jmen	3M51
LG Sementes	LG 6033 PRO2
LG Sementes	LG 6038 PRO2
LG Sementes	LG 6304 PRO
Morgan	30A37 PW
Morgan	30A95 PW
Morgan	MG 652 PW
Morgan	MG 699 PW
Riber KWS	RB 9005 PRO
Riber KWS	RB 9006 PRO
Riber KWS	RB 9110 PRO
Sempre	22M12 VIP
Sempre	22S11 TOP
Sempre	22S18 TOP
Syngenta	Celeron TL
Syngenta	Penta Vip3
Syngenta	Syn 5T78A VIP3
Syngenta	Syn NB 3234A VIP
Syngenta	Syn SX7331 VIP

Os dados de precipitação ocorridos a 10 dias antes da instalação do ensaio até a colheita estão apresentados na Figura 1.

Figura 1. Temperatura Média e Precipitação ocorridos 10 dias antes da instalação do ensaio até a colheita, com acumulado de 932,2 mm de precipitação no período. Fundação Rio Verde, 2015.

A semeadura foi realizada com o auxílio de saraquá, sendo depositada de 2 a 4 sementes por cova, e posteriormente quando a planta se encontrava no estádio V1-V2 foi realizado o desbaste manual preconizando uma planta por cova. A população foi ajustada para 58.000 plantas por hectare para todos os materiais, exceto para os materiais da empresa Agroeste e para o material 280 PRO da empresa Balu para a Alta Tecnologia, onde as respectivas populações foram de 63.000 e 70.000 pl ha⁻¹.

Para o controle de pragas foi realizada uma aplicação de Galil SC na dosagem de 0,3 L ha⁻¹ no estádio V3, e uma aplicação de Premio na dosagem de 0,1 L ha⁻¹. O controle de plantas daninhas foi realizado com o produto Atrazina Nortox 500 SC na dosagem de 3,0 L ha⁻¹, e Soberan na dosagem de 0,24 L ha⁻¹, no estádio V3. Para o controle de doenças foram realizadas duas aplicações de Abacus na dosagem de 0,3 ha⁻¹ no estádio V8 e R1 da cultura, respectivamente.

Abaixo estão descritas as avaliações realizadas durante a condução do ensaio.

Altura de Plantas Final: Altura média de duas plantas por parcela medindo do nível do solo até a inserção da folha bandeira, avaliação realizada no final do ciclo da cultura;

Altura de Inserção da Espiga: Altura média de duas plantas por parcela medindo do nível do solo até a inserção da espiga principal, avaliação realizada no final do ciclo da cultura;

<u>População de Plantas:</u> Contagem de plantas presentes em 4 metros lineares, realizado nas duas linhas centrais de cada parcela, e convertido para unidade de área padrão, avaliação realizada no final do ciclo da cultura;

<u>Massa de Mil Grãos:</u> Realizado após a colheita e trilhagem das parcelas, pesagem de 100 grãos de milho por parcela, convertidos para massa de mil grãos, com umidade de comercialização padrão de 13%;

<u>Produtividade:</u> Peso dos grãos de milho colhidos na área útil da parcela, que foi composta por duas linhas de 5 metros cada, totalizando 10 metros lineares, convertidos para unidade de área com umidade de comercialização padrão de 13%.

Os resultados foram submetidos à análise de variância no esquema fatorial 2x50 e a comparação de médias pelo Teste de Scott-Knott ao nível de 5% de probabilidade através do programa computacional Assistat 7.6 Beta (Silva et al. 2009).

Resultados e Discussão

Não foi verificada interação estatisticamente significativa para a variável Altura de Plantas, ou seja, os dois níveis de adubação empregados não alteraram estatisticamente à altura das plantas de um mesmo híbrido, porém foi verificada diferença entre a média dos híbridos testados e a média da altura de plantas para cada nível de adubação, conforme Tabela 2.

Observando a média de altura de plantas dos híbridos testados, a Alta Tecnologia apresentou 223,0 cm em relação à Média Tecnologia 216,6 cm, uma diferença de 6,4 centímetros entre as tecnologias empregadas. Entre os híbridos testados os que apresentaram as maiores alturas de plantas foram os híbridos AG 8580 PRO X, LG 6038 PRO2, 3M40, Ipanema, 2M55, 2M70, destes o híbrido 3M40 apresentou a maior produtividade na Alta Tecnologia e o híbrido AG 8580 PRO X a maior produtividade na Média Tecnologia.

Tabela 2. Altura de Plantas (cm) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

				(
Empresss	Híbridos	Altura de Plantas (cm) ^{ns}		Média*
Empresas	півниоз	Alta Téc.	Média Téc.	ivieuia
Agroceres	AG 8580 PRO X	258,8	251,3	255,0 A
LG Sementes	LG 6038 PRO2	254,5	225,3	239,9 A
Jmen	3M40	244,3	244,0	244,1 A
DiSolo	Ipanema	242,8	252,3	247,5 A
Jmen	2M55	242,5	241,5	242,0 A
Jmen	2M70	241,3	232,5	236,9 A
LG Sementes	LG 6033 PRO2	240,5	229,3	234,9 B
Jmen	2M80	238,3	225,0	231,6 B
Jmen	2M77	237,5	223,3	230,4 B

Tabela 2. Altura de Plantas (cm) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

	11(h.u) -1	Altura de P	Plantas (cm) ^{ns}	N A ≠ -1! - *
Empresas	Híbridos -	Alta Téc.	Média Téc.	Média*
Jmen	3M51	236,5	218,5	227,5 B
BioGene	BG 7032 H	233,5	235,3	234,4 B
Sempre	22S18 TOP	232,8	202,3	217,5 C
Riber KWS	RB 9006 PRO	232,0	213,0	222,5 B
Jmen	4M50	231,3	211,5	221,4 C
Riber KWS	RB 9005 PRO	230,5	217,5	224,0 B
Syngenta	Penta Vip3	229,5	206,5	218,0 C
Agroceres	AG 7088 RR2	229,3	220,0	224,6 B
Syngenta	Celeron TL	229,3	230,5	229,9 B
Morgan	MG 699 PW	227,0	203,5	215,3 C
BioGene	BG 7439 H	226,8	225,0	225,9 B
Riber KWS	RB 9110 PRO	226,8	214,8	220,8 C
Sempre	22S11 TOP	226,8	212,0	219,4 C
Syngenta	Syn SX7331 VIP	226,8	210,8	218,8 C
Jmen	2M90	226,0	220,5	223,3 B
Agroeste	AS 1652 PRO 2	223,8	235,8	229,8 B
Morgan	30A95 PW	223,8	209,8	216,8 C
Agroceres	AG 8088 PRO X	223,5	218,0	220,8 C
Agroeste	AS 1656 PRO3	222,5	222,8	222,6 B
LG Sementes	LG 6304 PRO	222,0	203,0	212,5 C
Agroeste	AS 1633 PRO2	221,5	230,5	226,0 B
Dekalb	DKB 290 PRO3	220,8	205,5	213,1 C
DiSolo	DSS 1001	218,8	192,8	205,8 D
Dow	2B810 PW	218,3	213,0	215,6 C
DiSolo	Copacabana	214,5	204,3	209,4 D
Dow	2B512 PW	213,5	200,3	206,9 D
Balu	280 PRO	213,3	218,3	215,8 C
Dow	2B633 PW	212,5	202,5	207,5 D
Dow	2B610 PW	211,8	207,8	209,8 D
BioGene	BG 7037 H	210,5	216,0	213,3 C
Dekalb	DKB 390 PRO2	207,3	204,0	205,6 D
Morgan	MG 652 PW	206,5	216,5	211,5 C
Sempre	22M12 VIP	204,8	198,3	201,5 D
Syngenta	Syn 5T78A VIP3	204,3	223,5	213,9 C
Coodetec	CD 384 PW	203,8	194,8	199,3 D
Syngenta	Syn NB 3234A VIP	203,8	196,5	200,1 D
Agroeste	AS 1656 PRO 2	203,3	209,8	206,5 D
Morgan	30A37 PW	202,8	200,0	201,4 D
DiSolo	Mucuripe	202,8	224,3	213,5 C
Balu	Syn7E28 TLTG VIP	200,8	209,3	205,0 D
Coodetec	CD 3770 PW	195,5	207,5	201,5 D

Tabela 2. Altura de Plantas (cm) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

Гиническа	Híbridos	Altura	de Plantas (cm) ^{ns}	Média*
Empresas	HIDITUOS	Alta Téc.	Média Téc.	ivieuia
Média*		223,0 a	216,6 b	219,8
Coeficiente de Variação (%)			7,1	

^{*}As médias seguidas pela mesma letra minúscula na linha e maiúsculas na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Scott-Knott ao nível de 5% de probabilidade. ns – não significativo.

A variável Altura de Inserção da Espiga também não apresentou interação significativa entre níveis de tecnologia e os híbridos utilizados, porém foram observadas diferenças estatísticas entre a média de altura da espiga dos híbridos e também a média de altura da espiga para os níveis de tecnologia empregados.

A Alta Tecnologia apresentou uma média de altura de inserção da espiga de 111,2 cm e a Média Tecnologia de 106,4 cm, uma diferença média de 4,8 centímetros entre os níveis de tecnologias (Tabela 3).

Tabela 3. Altura de Inserção da Espiga (cm) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

				(continua)
F	I I (lawial a a	Altura de Ins. De	e Espiga (cm) ^{ns}	0.0 ź d:
Empresas	Híbridos -	Alta Téc.	Média Téc.	- Média*
DiSolo	Ipanema	138,0	133,3	135,6 A
LG Sementes	LG 6038 PRO2	135,8	112,3	124,0 B
Agroceres	AG 8580 PRO X	133,8	117,3	125,5 B
Jmen	4M50	132,0	110,5	121,3 B
Agroceres	AG 7088 RR2	123,5	111,5	117,5 C
Syngenta	Penta Vip3	122,0	107,8	114,9 C
Jmen	2M55	121,5	117,0	119,3 C
Jmen	2M70	120,5	109,8	115,1 C
Jmen	3M51	120,0	107,3	113,6 C
Syngenta	Syn SX7331 VIP	119,5	106,3	112,9 C
BioGene	BG 7032 H	119,0	111,5	115,3 C
BioGene	BG 7439 H	117,0	114,5	115,8 C
Riber KWS	RB 9006 PRO	116,8	104,0	110,4 D
LG Sementes	LG 6033 PRO2	116,5	116,0	116,3 C
Jmen	3M40	115,8	127,0	121,4 B
Morgan	MG 699 PW	113,5	101,5	107,5 D
Sempre	22S18 TOP	113,5	107,5	110,5 D
Jmen	2M77	113,3	104,3	108,8 D
Syngenta	Syn 5T78A VIP3	113,3	102,0	107,6 D
Dekalb	DKB 290 PRO3	112,5	103,8	108,1 D
Jmen	2M80	111,8	104,8	108,3 D
Jmen	2M90	111,8	111,8	111,8 C

Tabela 3. Altura de Inserção da Espiga (cm) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

		Altura de Ins. De Espiga (cm)ns		(continuação
Empresas	Híbridos	Alta Téc.	Média Téc.	Média*
Agroeste	AS 1656 PRO3	111,5	107,3	109,4 D
Dekalb	DKB 390 PRO2	111,3	107,3	110,1 D
DiSolo	DSS 1001	111,3	99,0	110,1 D 104,5 D
	AS 1633 PRO2	109,5	116,0	•
Agroeste			·	112,8 C
Balu	Syn7E28 TLTG VIP	109,3	104,3	106,8 D
Sempre	22M12 VIP	109,3	116,5	112,9 C
Dow	2B512 PW	109,0	91,8	100,4 D
LG Sementes	LG 6304 PRO	108,8	92,0	100,4 D
Morgan	30A95 PW	108,8	104,3	106,5 D
Sempre	22S11 TOP	107,8	100,3	104,0 D
Agroeste	AS 1656 PRO 2	107,0	103,3	105,1 D
Dow	2B633 PW	106,5	104,0	105,3 D
Dow	2B610 PW	106,3	107,5	106,9 D
Dow	2B810 PW	105,3	95,5	100,4 D
DiSolo	Copacabana	105,0	102,3	103,6 D
Morgan	30A37 PW	104,8	101,5	103,1 D
BioGene	BG 7037 H	104,3	104,5	104,4 D
Balu	280 PRO	103,8	107,0	105,4 D
Agroceres	AG 8088 PRO X	103,3	99,0	101,1 D
Syngenta	Celeron TL	103,3	90,0	96,6 D
Agroeste	AS 1652 PRO 2	103,0	108,3	105,6 D
Riber KWS	RB 9005 PRO	103,0	89,3	96,1 D
Morgan	MG 652 PW	100,8	109,5	105,1 D
Riber KWS	RB 9110 PRO	100,3	95,5	97,9 D
DiSolo	DiSolo Mucuripe		112,3	106,0 D
Coodetec	·		106,8	99,8 D
Coodetec	CD 3770 PW	90,8	97,0	93,9 D
Syngenta	Syn NB 3234A VIP	85,5	107,0	96,3 D
Mé	édia*	111,2 a	106,4 b	108,8
Coeficiente d	le Variação (%)	10,7		

^{*}As médias seguidas pela mesma letra minúscula na linha e maiúsculas na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Scott-Knott ao nível de 5% de probabilidade. ns – não significativo.

A População Final de Plantas não apresentou interação significativa entre as tecnologias e os híbridos utilizados, sendo observadas diferenças estatísticas entre os híbridos testados e entre as médias da população para cada nível tecnológico (Tabela 4).

A população para a Alta Tecnologia foi de 1.994 plantas por hectare, equivalente a 0,09 plantas por metro linear superior ao da Média Tecnologia, apesar desta pequena diferença, foi verificada diferença estatística entre os níveis de adubação para esta variável.

O híbrido 280 PRO da empresa Balu apresentou a maior média de população com 65.139 pl ha⁻¹, este híbrido está entre os que apresentaram a maior produtividade para a Alta Tecnologia. Entre os híbridos que apresentaram a menor média de população o híbrido AG 8580 PRO X da empresa Agroceres apresentou a maior produtividade para a Média Tecnologia, como pode ser observado na Tabela 4.

Tabela 4. População Final de Plantas (pl ha⁻¹) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

Empresss	Híbridos	População de Pl	antas (pl ha ⁻¹) ^{ns}	Média*
Empresas	пірпиоз	Alta Téc.	Média Téc.	ivieula
Balu	280 PRO	70.000	60.278	65.139 A
Morgan	MG 652 PW	66.111	58.333	62.222 B
Dow	2B610 PW	62.778	58.611	60.695 B
Jmen	2M77	62.778	58.611	60.695 B
Syngenta	Syn SX7331 VIP	61.944	61.111	61.528 B
Syngenta	Syn 5T78A VIP3	61.667	56.667	59.167 C
DiSolo	DSS 1001	61.667	55.278	58.472 C
DiSolo	Ipanema	60.833	54.167	57.500 C
Dow	2B810 PW	60.556	57.500	59.028 C
BioGene	BG 7032 H	60.000	59.445	59.722 C
Morgan	30A37 PW	60.000	56.667	58.333 C
LG Sementes	LG 6038 PRO2	59.445	56.667	58.056 C
Riber KWS	RB 9006 PRO	59.445	58.611	59.028 C
Riber KWS	RB 9110 PRO	59.167	55.556	57.361 C
Agroeste	AS 1656 PRO3	58.889	59.722	59.306 C
LG Sementes	LG 6033 PRO2	58.889	53.056	55.972 C
Syngenta	Penta Vip3	58.889	57.500	58.194 C
Sempre	22M12 VIP	58.611	58.333	58.472 C
BioGene	BG 7439 H	58.334	56.111	57.223 C
Jmen	3M40	58.334	60.000	59.167 C
DiSolo	Mucuripe	58.334	56.945	57.639 C
Agroceres	AG 8088 PRO X	58.056	56.944	57.500 C
Dekalb	DKB 290 PRO3	57.778	57.500	57.639 C
Dow	2B512 PW	57.778	59.167	58.472 C
Jmen	2M90	57.778	55.556	56.667 C
Sempre	22S11 TOP	57.778	59.445	58.611 C
Syngenta	Celeron TL	57.778	58.889	58.334 C
Morgan	30A95 PW	57.222	54.445	55.833 C
Syngenta	Syn NB 3234A VIP	57.222	58.056	57.639 C
Sempre	22S18 TOP	56.944	55.556	56.250 C
Morgan	MG 699 PW	56.667	55.556	56.111 C
Riber KWS	RB 9005 PRO	56.667	57.222	56.945 C
Agroceres	AG 7088 RR2	56.111	53.611	54.861 D
Agroeste	AS 1633 PRO2	56.111	56.111	56.111 C

Tabela 4. População Final de Plantas (pl ha⁻¹) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

				(continuação
Гториосос	Híbridos -	População de F	Plantas (pl ha ⁻¹) ns	Média*
Empresas	HIDITIOS	Alta Téc.	Média Téc.	iviedia ·
Jmen	2M70	56.111	55.000	55.556 D
LG Sementes	LG 6304 PRO	56.111	53.889	55.000 D
Coodetec	CD 3770 PW	55.833	53.889	54.861 D
Agroeste	AS 1656 PRO 2	55.556	55.556	55.556 D
Jmen	4M50	55.556	50.556	53.056 D
Agroeste	AS 1652 PRO 2	55.000	54.167	54.584 D
Dekalb	DKB 390 PRO2	55.000	52.500	53.750 D
BioGene	BG 7037 H	53.889	51.111	52.500 D
Jmen	2M55	53.334	46.111	49.722 E
Jmen	2M80	53.333	52.778	53.056 D
Balu	Syn7E28 TLTG VIP	52.778	52.500	52.639 D
Jmen	3M51	52.778	55.834	54.306 D
Dow	2B633 PW	52.222	52.222	52.222 D
Coodetec	CD 384 PW	51.667	51.945	51.806 D
DiSolo	Copacabana	51.667	45.278	48.472 E
Agroceres	AG 8580 PRO X	49.167	50.278	49.722 E
N	lédia*	57.611 a	55.617 b	56.614
Coeficiente	de Variação (%)	6	5,3	

^{*}As médias seguidas pela mesma letra minúscula na linha e maiúsculas na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Scott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Foi observada interação significativa estatisticamente entre as tecnologia e os híbridos utilizados para a variável Massa de Mil Grãos (Tabela 5). Vinte e sete híbridos apresentaram uma maior massa de mil grãos para a Alta Tecnologia, dos quais os híbridos 280 PRO, BG 7032 H, 22S11 TOP, MG 699 PW, 30A37 PW, AG 7088 RR2 e LG 6038 PRO2 apresentaram a maior produtividade, e apesar dos híbridos 28810 PW, BG 7439 H, 3M40 e AG 8088 PRO X terem apresentado uma menor Massa de Mil Grãos, suas produtividades estão entre as melhores para a Alta Tecnologia. A Média Tecnologia empregada não apresentou diferenças para a Massa de Mil Grãos entre os híbridos. Já a média da variável Massa de Mil Grãos para os dois níveis de tecnologia apresentou diferença, onde a Média Tecnologia empregada apresentou um valor mais alto do que a Alta Tecnologia, com 287,5 gramas, valor que está 5,4 gramas acima do valor observado para a Alta Tecnologia.

Tabela 5. Massa de Mil Grãos (g) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

F	119 1	Massa de M	il Grãos (g) *	8.4.11.4
Empresas	Híbridos —	Alta Téc.	Média Téc.	Média*
Balu	Syn7E28 TLTG VIP	308,5 aA	279,2 bA	293,8 A
Balu	280 PRO	305,9 aA	286,4 aA	296,2 A
BioGene	BG 7032 H	304,4 aA	287,7 aA	296,1 A
Sempre	22S11 TOP	300,8 aA	289,4 aA	295,1 A
DiSolo	DSS 1001	297,4 aA	288,3 aA	292,8 A
Morgan	MG 699 PW	296,3 aA	289,3 aA	292,8 A
Jmen	2M90	295,8 aA	279,2 aA	287,5 A
Dow	2B633 PW	295,7 aA	289,1 aA	292,4 A
Riber KWS	RB 9006 PRO	295,0 aA	281,7 aA	288,3 A
Jmen	2M70	293,0 aA	296,2 aA	294,6 A
Agroceres	AG 8580 PRO X	291,7 aA	292,3 aA	292,0 A
LG Sementes	LG 6033 PRO2	289,6 aA	293,3 aA	291,4 A
Jmen	3M51	289,0 aA	293,1 aA	291,0 A
Dow	2B610 PW	288,8 aA	291,4 aA	290,1 A
Morgan	30A37 PW	286,6 aA	284,1 aA	285,4 A
Morgan	30A95 PW	286,6 aA	284,8 aA	285,7 A
Dow	2B512 PW	285,4 aA	287,2 aA	286,3 A
Sempre	22M12 VIP	285,0 aA	287,6 aA	286,3 A
Agroceres	AG 7088 RR2	284,7 aA	292,1 aA	288,4 A
LG Sementes	LG 6038 PRO2	284,3 aA	289,0 aA	286,6 A
Riber KWS	RB 9005 PRO	284,1 aA	282,4 aA	283,2 A
DiSolo	Ipanema	283,4 aA	283,9 aA	283,7 A
Jmen	2M77	283,3 aA	287,5 aA	285,4 A
Syngenta	Penta Vip3	282,8 aA	277,9 aA	280,4 A
Agroeste	AS 1656 PRO 2	282,7 aA	290,5 aA	286,6 A
Agroeste	AS 1652 PRO 2	282,4 aA	286,4 aA	284,4 A
Agroeste	AS 1633 PRO2	281,9 aA	289,3 aA	285,6 A
Dow	2B810 PW	280,9 aB	272,1 aA	276,5 A
Agroeste	AS 1656 PRO3	280,1 aB	295,6 aA	287,9 A
BioGene	BG 7439 H	279,2 aB	294,0 aA	286,6 A
Dekalb	DKB 290 PRO3	279,2 aB	284,9 aA	282,0 A
Jmen	3M40	278,8 aB	290,4 aA	284,6 A
Jmen	4M50	277,3 aB	283,7 aA	280,5 A
Dekalb	DKB 390 PRO2	276,6 aB	293,3 aA	285,0 A
DiSolo	Mucuripe	276,4 aB	286,4 aA	281,4 A
DiSolo	Copacabana	275,4 aB	282,6 aA	279,0 A
BioGene	BG 7037 H	274,6 aB	286,7 aA	280,7 A
Morgan	MG 652 PW	274,1 aB	294,0 aA	284,0 A
Syngenta	Syn NB 3234A VIP	273,2 aB	289,4 aA	281,3 A

Tabela 5. Massa de Mil Grãos (g) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho em segunda safra em Lucas do Rio Verde – MT, 2015.

				(continuaçã
Гиническа	Híbridos -	Massa de N	/lil Grãos (g) *	- Média*
Empresas	Hibridos	Alta Téc.	Média Téc.	ivieula
Syngenta	Syn SX7331 VIP	272,8 aB	291,2 aA	282,0 A
Coodetec	CD 384 PW	272,5 aB	285,1 aA	278,8 A
Agroceres	AG 8088 PRO X	272,1 aB	281,3 aA	276,7 A
LG Sementes	LG 6304 PRO	271,3 aB	290,0 aA	280,7 A
Sempre	22S18 TOP	271,1 aB	293,0 aA	282,1 A
Jmen	2M80	269,0 aB	289,7 aA	279,3 A
Jmen	2M55	266,5 bB	290,7 aA	278,6 A
Coodetec	CD 3770 PW	264,7 bB	288,0 aA	276,4 A
Syngenta	Syn 5T78A VIP3	264,2 aB	281,6 aA	272,9 A
Syngenta	Celeron TL	254,6 bB	284,3 aA	269,5 A
Riber KWS	RB 9110 PRO	254,3 bB	286,0 aA	270,1 A
Méd	dia*	282,1 b	287,5 a	284,8
Coeficiente de	e Variação (%)		5,5	

^{*}As médias seguidas pela mesma letra minúscula na linha e maiúsculas na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Scott-Knott ao nível de 5% de probabilidade. ns – não significativo.

A produtividade do milho apresentou interação significativa entre as tecnologias e os híbridos testados, ou seja, os diferentes níveis de adubação influenciaram diferentemente o mesmo híbrido (Tabela 6).

Para a Alta Tecnologia os híbridos 2B810 PW, LG 6038 PRO2, 22S11 TOP, 280 PRO, BG 7032 H, AG 8088 PRO X, BG 7439 H, AG 7088 RR2, 30A37 PW, 3M40 e MG 699 PW apresentaram os maiores valores de produtividade com uma média de 164,7 sc ha⁻¹. Já para a Média Tecnologia os híbridos 2B810 PW, LG 6038 PRO2, 22S11 TOP, BG 7032 H, BG 7439 H, AG 8580 PRO X, 2B633 PW e 2B610 PW apresentaram as maiores produtividades com uma média de 150,9 sc ha⁻¹, ambas produtividades estão acima da média observada na região de Lucas do Rio Verde – MT, que está em torno de 110 sc ha⁻¹.

Os híbridos 2B810 PW, LG 6038 PRO2, 280 PRO, AG 8088 PRO X, AG 7088 RR2, 30A37 PW, MG 699 PW, 30A95 PW, MG 652 PW, 2M55, LG 6033 PRO2, RB 9005 PRO, 4M50, Syn SX7331 VIP e DSS 1001, apresentaram um ganho de produtividade estatisticamente superior com a Alta Tecnologia, ou seja, estes híbridos respondem a uma adoção de uma melhor adubação na cultura, já os demais híbridos apresentaram valores de produtividade estatisticamente idênticos para os dois níveis de tecnologia empregados no ensaio, ou seja, sem uma resposta positiva quando suplementado com uma melhor adubação.

O híbrido de milho que apresentou o maior ganho médio de produtividade com a adoção da Alta Tecnologia foi o híbrido 4M50 da empresa Jmen, onde com a Alta Tecnologia empregada ele produziu 33,8 sc ha⁻¹ a mais do que a Média Tecnologia que é praticada atualmente pelos produtores da região de Lucas do Rio Verde – MT, em média os híbridos apresentaram um ganho de 13,3 sc ha⁻¹ na Alta Tecnologia.

Tabela 6. Produtividade (sc ha-1) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho e Ganho médio com a adoção da Alta Tecnologia para a segunda safra em Lucas do Rio Verde – MT, 2015.

					(continua)
Empresas	Híbridos -	Produtivida	de (sc ha ⁻¹)*	Média*	Ganho Médio
Empresus	THISTIGUS	Alta Téc.	Média Téc.	Wicala	(sc ha ⁻¹)
Dow	2B810 PW	180,3 aA	153,0 bA	166,6 A	+27,3
LG Sementes	LG 6038 PRO2	169,8 aA	144,8 bA	157,3 A	+25,0
Sempre	22S11 TOP	167,5 aA	152,3 aA	159,9 A	+15,2
Balu	280 PRO	165,5 aA	136,3 bB	150,9 B	+29,2
BioGene	BG 7032 H	165,2 aA	150,7 aA	158,0 A	+14,5
Agroceres	AG 8088 PRO X	162,5 aA	131,7 bB	147,1 B	+30,8
BioGene	BG 7439 H	162,3 aA	159,7 aA	161,0 A	+02,6
Agroceres	AG 7088 RR2	162,2 aA	135,2 bB	148,7 B	+27,0
Morgan	30A37 PW	161,1 aA	133,3 bB	147,2 B	+27,8
Jmen	3M40	157,6 aA	141,5 aB	149,6 B	+16,1
Morgan	MG 699 PW	157,2 aA	137,9 bB	147,5 B	+19,3
Riber KWS	RB 9006 PRO	155,7 aB	140,3 aB	148,0 B	+15,4
Agroceres	AG 8580 PRO X	154,3 aB	154,4 aA	154,3 A	-00,1
Morgan	30A95 PW	153,5 aB	126,1 bB	139,8 B	+27,4
Agroeste	AS 1633 PRO2	152,9 aB	136,6 aB	144,8 B	+16,3
Morgan	MG 652 PW	152,9 aB	125,0 bB	139,0 B	+27,9
Jmen	2M77	151,1 aB	135,9 aB	143,5 B	+15,2
Jmen	2M55	151,0 aB	130,1 bB	140,6 B	+20,9
Dow	2B633 PW	150,4 aB	143,7 aA	147,1 B	+06,7
Jmen	2M70	149,6 aB	141,3 aB	145,5 B	+08,3
LG Sementes	LG 6033 PRO2	148,9 aB	123,0 bC	135,9 B	+25,9
Jmen	2M90	148,0 aB	136,8 aB	142,4 B	+11,2
Jmen	2M80	147,9 aB	137,2 aB	142,5 B	+10,7
Dow	2B610 PW	145,6 aB	148,3 aA	147,0 B	-02,7
Dow	2B512 PW	144,6 aB	139,1 aB	141,8 B	+05,5
Riber KWS	RB 9005 PRO	143,9 aB	114,6 bC	129,3 C	+29,3
Jmen	4M50	143,7 aB	109,9 bC	126,8 C	+33,8
Syngenta	Syn SX7331 VIP	143,1 aB	110,9 bC	127,0 C	+32,2
Jmen	3M51	142,6 aB	132,7 aB	137,6 B	+09,9
Sempre	22M12 VIP	141,9 aB	128,7 aB	135,3 B	+13,2
BioGene	BG 7037 H	139,8 aB	134,7 aB	137,3 B	+05,1
Agroeste	AS 1656 PRO3	135,5 aC	135,0 aB	135,3 B	+00,5
Sempre	22S18 TOP	134,3 aC	127,7 aB	131,0 C	+06,6
Dekalb	DKB 390 PRO2	130,5 aC	127,8 aB	129,2 C	+02,7
Dekalb	DKB 290 PRO3	129,6 aC	128,3 aB	128,9 C	+01,3
Syngenta	Penta Vip3	128,7 aC	111,2 aC	120,0 C	+17,5
Balu	Syn7E28 TLTG VIP	128,2 aC	125,3 aB	126,8 C	+02,9
Syngenta	Syn 5T78A VIP3	125,8 aC	117,3 aC	120,8 C	+02,9
Agroeste	AS 1656 PRO 2	125,2 aC	117,5 aC 115,6 aC	120,4 C	+09,6
Agroeste	AS 1652 PRO 2	123,0 aC	109,5 aC	120,4 C 116,2 C	+13,5
Agroeste	V2 1025 LIVO 5	123,0 aC	103,3 aC	110,2 C	113,3

Tabela 6. Produtividade (sc ha⁻¹) para os híbridos testados nos dois níveis de tecnologias empregados na cultura do milho e Ganho médio com a adoção da Alta Tecnologia para a segunda safra em Lucas do Rio Verde – MT, 2015.

(continua)

Empresas	Híbridos –	Produtividade (sc ha ⁻¹)*		Média*	Ganho Médio
		Alta Téc.	Média Téc.	iviedia .	(sc ha ⁻¹)
Coodetec	CD 3770 PW	122,8 aC	132,9 aB	127,9 C	-10,1
LG Sementes	LG 6304 PRO	122,4 aC	109,9 aC	116,1 C	+12,5
Riber KWS	RB 9110 PRO	120,5 aC	120,0 aC	120,3 C	+00,5
Coodetec	CD 384 PW	119,6 aC	117,7 aC	118,7 C	+01,9
DiSolo	Ipanema	118,4 aC	108,8 aC	113,6 D	+09,6
Syngenta	Celeron TL	115,8 aD	110,8 aC	113,3 D	+05,0
DiSolo	DSS 1001	112,5 aD	91,2 bD	101,9 E	+21,3
Syngenta	Syn NB 3234A VIP	112,1 aD	107,6 aC	109,9 D	+04,5
DiSolo	Copacabana	101,8 aD	90,6 aD	96,2 E	+11,2
DiSolo	Mucuripe	100,0 aD	101,6 aD	100,8 E	-01,6
М	Média*		128,3 b	134,95	+13,3
Coeficiente de Variação (%)			9,4		

Realizando uma análise de custo de produção entre os dois níveis de tecnologia e excluindo os insumos e tratos culturais que foram idênticos nos dois sistemas, ou seja, levando em consideração somente as diferentes adubações, temos o custo de produção na Média Tecnologia de 287,77 reais ha⁻¹ e no de Alta Tecnologia de 661,95 reais ha⁻¹, ou seja, uma diferença de 374,18 reais ha⁻¹ entre os sistemas (Imea 2015), logo, a produtividade do híbrido na Alta Tecnologia tem que ser superior a 25,9 sc ha⁻¹ para cobrir os custos de produção.

Neste ensaio com 50 híbridos, somente 20% dos obtiveram uma produtividade suficiente para cobrir os custos com fertilizantes e proporcionaram um maior rendimento ao produtor (híbridos: 2B810 PW; 280 PRO; AG 8088 PRO X; AG 7088 RR2; 30A37 PW; 30A95 PW; MG 652 PW; RB 9005 PRO; 4M50 e Syn SX7331 VIP).

Considerações Finais

A adoção da Alta Tecnologia proporciona uma maior Altura de Plantas, Altura de Inserção da Espiga, População Final e Produtividade.

O incremento da produtividade em função do nível tecnológico adotado é variável de acordo com o potencial produtivo do híbrido testado.

A produtividade média com o emprego de Média Tecnologia foi de 128,3 sc ha⁻¹ e com Alta Tecnologia foi de 141,6 sc ha⁻¹, resultando em ganho relativo médio de 10,4%, equivalente a 13,3 sc ha⁻¹.

Os híbridos 2B810 PW, 280 PRO, AG 8088 PRO X, AG 7088 RR2, 30A37 PW, 30A95 PW, MG 652 PW, RB 9005 PRO, 4M50 e Syn SX7331 VIP foram os que responderam economicamente a adoção da Alta Tecnologia.

Referências Bibliográficas

SILVA, F. de A.S.; AZEVEDO, C.A.V. de, **Principal Components Analysis in the Software Assistat-Statistical Attendance**. In: World Congress on Computers in Agriculture, 7, Reno-NV-USA: American Society of Agricultural and Biological Engineers, 2009.

IMEA, **Instituto Mato-grossense de Economia Aplicada.** Disponível em < http://www.imea.com.br/upload/publicacoes/arquivos/R403_2015_07_10BSMilho.pdf> acessado em Julho de 2015.

Boletim Técnico Safra 2014/15

Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde Rodovia MT 449 – KM 08 – Caixa Postal 159 CEP: 78.455-000 – Lucas do Rio Verde – MT fundacao@fundacaorioverde.com.br www.fundacaorioverde.com.br Telefone: (65) 3549-1161

