

Autores

Rodrigo Pengo Rosa, M. Sc. Engenheiro Agrônomo Fundação Rio Verde, MT rodrigopengo@fundacaorioverde.com.br

Fabio Kempim Pittelkow, D. Sc. Engenheiro Agrônomo Fundação Rio Verde, MT fabio@fundacaorioverde.com.br

Rodrigo Marcelo Pasqualli Engenheiro Agrônomo Fundação Rio Verde, MT rodrigo@fundacaorioverde.com.br

Colaboradores

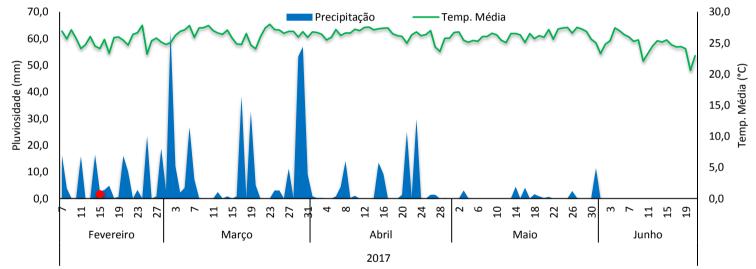
Rafael Prevedelo — Técnico Agrícola Ângelo Ribeiro Trentin — Eng. Agrônomo Igor Cajá da Silva — Estagiário, Convênio UNIVAG João Witor Zani Furlan — Estagiário, Convênio UNIR Leandro Grigorio Dutra Silva — Estagiário, Convênio UNIVAG

AVALIAÇÃO DE NÍVEIS TECNOLÓGICOS DE ADUBAÇÃO EM HÍBRIDOS DE MILHO EM SEGUNDA SAFRA

<u>Objetivo</u>

Avaliar o desempenho agronômico de híbridos de milho cultivados em segunda safra em dois níveis tecnológicos de adubação no município de Lucas do Rio Verde – MT.

Material e Métodos


O experimento foi instalado nas dependências da Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde, localizada entre as coordenadas geográficas 13°00′27″ S - 55°58′07″ W e 12°59′34″ S - 55°57′50″ W, com altitude média de 387 metros, no município de Lucas do Rio Verde – MT. O clima predominante é Aw (Köppen-Geiger, 1936), apresentando duas estações bem definidas (chuvosa, de outubro a abril e seca, de maio a setembro), o solo é classificado como LATOSSOLO VERMELHO AMARELO distrófico de textura argilosa (Embrapa, 2013).

A semeadura ocorreu na modalidade de plantio direto sobre palhada da soja, sendo utilizado o delineamento experimental de blocos ao acaso (DBC) com quatro repetições. As parcelas experimentais foram constituídas por 4 linhas de cultivo no espaçamento de 0,45 metros por 5,0 metros de comprimento, totalizando uma área de 9,0 m² por parcela e 36,0 m² para cada híbrido.

O semeio da cultura do milho foi realizado no dia 16 de fevereiro de 2017, com dois níveis tecnológicos de adubação, sendo o de Alta Tecnologia onde foi aplicado 350,0 kg ha⁻¹ do formulado 08-20-20 na linha de semeadura e 225,0 kg ha⁻¹ de 20-00-20 em V3/V4 e 100,0 kg ha⁻¹ de Ureia em V5 e a Média Tecnologia onde foi 350,0 kg ha⁻¹ do formulado 08-20-20 na linha de semeadura e 100,0 kg ha⁻¹ de Ureia em V5.

Os cinquenta híbridos empregados no ensaio com a cultura do milho estão descritos na Tabela 1 e os dados de precipitação ocorridos 10 dias antes da instalação do ensaio até a colheita estão apresentados na Figura 1.

Figura 1. Temperatura média e precipitação ocorridos 10 dias antes do semeio do milho até a maturação, com acumulado de 603,6 mm de precipitação no período. Fundação Rio Verde, 2017. ● = Data de Semeio

O controle de plantas daninhas foi realizado com duas aplicações de Soberan na dose de 0,24 L ha⁻¹ e duas aplicações de Atrazina na dose de 3,0 L ha⁻¹. O controle de pragas durante o ciclo da cultura foi realizado com duas aplicações de Galil na dose de 0,3 L ha⁻¹ e duas aplicações de Belt na dose de 0,15 L ha⁻¹. Para o controle de doenças foram realizadas duas aplicações de Authority na dose de 0,6 L ha⁻¹.

Tabela 1. Descrição dos tratamentos utilizados no experimento com a cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde 2017

Nº Trat.	Empresa	Tratamento	Nº Trat.	Empresa	Tratamento
1		AG 8061 PRO2	26	Dow	2B688 PW
2	_	AG 8088 PRO2	27		2M60
3	Agroceres	AG 8690 PRO3	28		2M77
4		AG 8700 PRO3	29		2M88
5		AS 1555 PRO3	30	Jmen	2M99 VIP
6	0	AS 1596 PRO3	31		2M80
7	Agroeste	AS 1633 PRO3	32		3M40
8		AS 1656 PRO3	33		3M51
9		SX 7634 VIP3	34		Land 229
10	Dal	SX 8004 VIP 3	35	Land	Land 356
11	Balu	BALU 460	36		Land 468
12		BALU 787	37		Land 544
13	Biogene	BG 7037 YHR	38		LG 3055 PRC
14		BG 7439 H	39	LG	LG 6033 PRO
15		BG 7640 VYH	40		LG 6036 PRO
16		CD 3410 PW	41	Morgan	MG 600 PW
17	Coodetec	CD 3612 PW	42		2830 VYH
18	Coodetec	CD 3770 PW	43	Pioneer	30531 VYH
19		CD 3880 PW	44	Pioneer	3380 HR
20		DKB 230 PRO3	45		3456 VYH
21	Dekalb	DKB 290 PRO3	46	Canta Halana	SHS 5070
22	рекаю	DKB 310 PRO3	47	Santa Helena	SHS 7990 PRC
23		DKB 390 PRO3	48		Formula
24	F a was as a	AL Avaré	49	Syngenta	Supremo
25	Formma	CBT 11	50		Syn 5T78

As avaliações realizadas durante a condução do ensaio estão descritas abaixo.

<u>Altura de Plantas:</u> Distância do nível do solo até a folha bandeira, sendo realizada no final do ciclo da cultura em duas plantas aleatórias em cada parcela;

<u>Altura de Inserção da Espiga:</u> Distância do nível do solo até a inserção da espiga, sendo realizada no final do ciclo da cultura em duas plantas aleatórias em cada parcela;

<u>População de Plantas:</u> Número de plantas por hectare, sendo realizada no final do ciclo da cultura em quatro metros lineares das duas linhas centrais de cada parcela, convertido para unidade de área;

<u>Massa de Mil Grãos:</u> Pesagem de 100 grãos de cada parcela e convertidos para massa de mil grãos com a umidade de comercialização padrão de 13%, realizado em pós colheita;

<u>Produtividade:</u> Massa dos grãos colhidos em cada parcela, convertidos para unidade de área com umidade de comercialização padrão de 13%, sendo realizado quando a cultura se encontrava em maturação plena em 4 metros

lineares das duas linhas centrais de cada parcela, onde o material colhido foi trilhado em equipamento especifico para debulha.

Posteriormente os dados foram submetidos à análise de variância no esquema fatorial 2x51, sendo dois níveis tecnológicos (adubação) e cinquenta híbridos visando verificar a influência das adubações nos híbridos, a comparação de médias foi realizada pelo Teste de Skott-Knott ao nível de 5% de probabilidade através do programa computacional Sisvar 5.6 (Ferreira, 2008).

Resultados e Discussão

As variáveis altura de plantas e altura de inserção de espiga apresentaram interação significativa estatisticamente entre os cinquenta híbridos de milho e os dois níveis tecnológicos utilizados, onde a maioria dos híbridos não apresentou diferença de altura entre os níveis tecnológicos, sendo que somente 28% dos híbridos apresentou valores superiores de altura de plantas para o nível de Alta Tecnologia e para a altura de inserção de espiga esse valor foi de 22% e somente os híbridos DKB 230 PRO3 e CBT 11 apresentaram uma maior altura de plantas quando empregada a Média Tecnologia já para a altura de inserção da espiga esse fato foi observado somente para o híbrido DKB 230 PRO3. Entre os híbridos testados o que apresentou a maior média de altura de plantas e altura de inserção da espiga entre os dois níveis tecnológicos foi o Pioneer 30531 VYH com média de 2,50 metros de altura e 1,49 metros de altura de espiga. Entre os níveis tecnológicos a Alta Tecnologia apresentou um incremento médio na altura de plantas de 8 cm e na altura de inserção de espigas de 6 cm (Tabela 2 e 3).

A população final de plantas também apresentou interação estatística significativa entre os híbridos e as adubações, onde a população pretendida era de 60.000 pl ha⁻¹ para todos os híbridos, mas observamos uma grande variação de valores entre os híbridos e entre os níveis tecnológicos empregados. Apesar da média da população para cada nível tecnológico ter apresentado um valor próximo a 60.000 pl ha⁻¹ na Alta Tecnologia a menor população observada foi de 52.084 pl ha⁻¹ e a maior foi de 68.056 pl ha⁻¹ já na Média Tecnologia a menor população foi de 53.473 pl ha⁻¹ e a maior de 66.667 pl ha⁻¹ (Tabela 4).

A massa de mil grãos apresentou interação estatística significativa entre as adubações e híbridos testados, onde foi observada pouca variação de valores entre os níveis tecnológicos para cada híbrido, porém os grãos apresentaram maiores médias de valores quando utilizado a Média Tecnologia, sendo os híbridos AS 1633 PRO3 e AG 8690 PRO3 os que apresentaram as melhores médias de massa de mil grãos para os dois níveis tecnológicos testados. Vale ressaltar que a tendência de maior massa de grãos observada nesta variável não se refletiu na produtividade (Tabela 5).

A variável produtividade também apresentou interação significativa estatisticamente entre as adubações e híbridos testados, porém a maioria dos híbridos apresentou produtividades estatisticamente iguais para os dois níveis tecnológicos empregados, onde somente os híbridos AS 1596 PR3, BG 7439 H, Land 229, LG 6036 PR3 e Pioneer 3456 VYH apresentaram ganho produtivo em relação a Média Tecnologia empregada. O ganho médio de produtividade com o emprego da Alta Tecnologia foi equivalente a 4,5 sc ha⁻¹ e os híbridos que apresentaram as maiores médias produtivas entre as duas adubações, obtiveram um incremento de 43,2 sc ha⁻¹ quando comparado aos híbridos com as menores médias produtivas (Tabela 6).

O ganho de 4,5 sc ha⁻¹ utilizando o emprego da Alta Tecnologia não proporciona ganho financeiro ao produtor, uma vez que o custo de uma aplicação de 225,0 kg ha⁻¹ de 20-00-20 é de R\$ 310,39 (IMEA, 2017a), já o lucro com o aporte de 4,5 sc ha⁻¹ seria de R\$ 47,25 (IMEA, 2017b), ou seja, o produtor estaria com um prejuízo equivalente a R\$ 263,14 caso optasse pela implementação da Alta Tecnologia conforme este ensaio, para obter ganho o incremento de produtividade deveria ser de no mínimo 30,0 sc ha⁻¹ e nenhum dos híbridos testados atingiu esse ganho, conforme observado na Tabela 7.

Os híbridos que apresentaram o maior ganho produtivo com o emprego da Alta Tecnologia foram o AS 1596 PRO3 e LG 6036 PRO3 com um ganho médio de 21,5 sc ha⁻¹, já o hibrido 2B688 PW foi o que apresentou o melhor ganho produtivo quando não foi empregada a Alta Tecnologia com um ganho equivalente a 12,4 sc ha⁻¹ (Tabela 7).

Tabela 2. Altura de plantas em função dos níveis tecnológicos e híbridos testados na cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde, 2017.

Híbridos —	Altura de Plantas (m)		- Média
	Alta Tecnologia	Média Tecnologia	
AG 8061 PRO2	2,25 bA	2,22 bA	2,24 d
AG 8088 PRO2	2,22 bA	2,27 bA	2,25 d
AG 8690 PRO3	2,37 aA	2,36 aA	2,37 c
AG 8700 PRO3	2,31 bA	2,22 bA	2,27 d
AS 1555 PRO3	2,15 cA	2,14 cA	2,15 e
AS 1596 PRO3	2,45 aA	2,30 bB	2,38 c
AS 1633 PRO3	2,39 aA	2,38 aA	2,39 c
AS 1656 PRO3	2,40 aA	2,37 aA	2,39 c
BG 7037 YHR	2,29 bA	2,21 bA	2,25 d
BG 7439 H	2,27 bA	2,29 bA	2,28 d
BG 7640 VYH	2,10 cA	2,13 cA	2,12 e
CD 3410 PW	2,27 bA	2,08 dB	2,18 e
CD 3612 PW	2,28 bA	2,13 cB	2,21 e
CD 3770 PW	2,13 cA	2,12 cA	2,13 e
CD 3880 PW	2,29 bA	2,18 cA	2,24 d
DKB 230 PRO3	2,39 aA	2,12 cB	2,26 d
DKB 290 PRO3	2,18 cB	2,31 bA	2,25 d
DKB 310 PRO3	2,28 bA	2,27 bA	2,28 d
DKB 390 PRO3	2,38 aA	2,30 bA	2,34 c
2B688 PW	2,14 cB	2,28 bA	2,21 e
AL Avaré	2,14 cb 2,30 bA	2,35 aA	2,33 c
CBT 11			
	2,30 bA	2,17 cB	2,24 d
2M60	2,43 aA	2,38 aA	2,41 b
2M77	2,36 aA	2,28 bA	2,32 c
2M88	2,26 bA	2,15 cA	2,21 e
2M99 VIP	2,30 bA	2,22 bA	2,26 d
2M80	2,29 bA	2,30 bA	2,30 d
3M40	2,46 aA	2,40 aA	2,43 b
3M51	2,36 aA	2,30 bA	2,33 c
Land 229	2,20 cA	2,00 dB	2,10 f
Land 356	2,13 cA	2,01 dB	2,07 f
Land 468	2,40 aA	2,16 cB	2,28 d
Land 544	2,17 cA	2,12 cA	2,15 e
LG 3055 PRO	2,46 aA	2,33 aB	2,40 b
LG 6033 PRO2	2,42 aA	2,25 bB	2,34 c
LG 6036 PRO3	2,43 aA	2,20 cB	2,32 d
MG 600 PW	2,22 bA	2,12 cA	2,17 e
2830 VYH	2,18 cA	2,09 dA	2,14 e
30531 VYH	2,55 aA	2,45 aA	2,50 a
3380 HR	2,36 aA	2,35 aA	2,36 c
3456 VYH	2,19 cA	2,08 dA	2,14 e
SHS 5070	2,20 cA	2,12 cA	2,16 e
SHS 7990 PRO2	2,38 aA	2,18 cB	2,28 d
Formula	2,13 cA	2,02 dA	2,08 f
Supremo	2,23 bA	2,13 cA	2,18 e
Syn 5T78	2,30 bA	2,20 cA	2,25 d
SX 7634 VIP3	227 bA	2,14 cB	2,21 e
SX 8004 VIP 3	2,21 bA	2,07 dB	2,14 e
Balu 460	2,08 cA	1,98 dA	2,03 f
Balu 787	2,07 cA	1,96 dA	2,03 f
Média	2,07 CA	•	2,021
ivicuia	2,28 A 3,7	2,20 B	

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 3. Altura de inserção da espiga em função dos níveis tecnológicos e híbridos testados na cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde. 2017.

Híbridos —	Altura de Espiga (m)		– Média
	Alta Tecnologia	Média Tecnologia	
AG 8061 PRO2	1,15 cA	1,09 cA	1,12 d
AG 8088 PRO2	1,08 dA	1,09 cA	1,09 d
AG 8690 PRO3	1,26 bA	1,24 bA	1,25 c
AG 8700 PRO3	1,35 aA	1,30 aA	1,33 b
AS 1555 PRO3	1,12 cA	1,11 cA	1,12 c
AS 1596 PRO3	1,40 aA	1,30 aA	1,35 b
AS 1633 PRO3	1,38 aA	1,24 bB	1,31 b
AS 1656 PRO3	1,30 bA	1,29 aA	1,30 b
BG 7037 YHR	1,32 bA	1,12 cB	1,22 c
BG 7439 H	1,18 cA	1,27 bA	1,23 c
BG 7640 VYH	1,05 dA	1,08 cA	1,07 d
CD 3410 PW	1,18 cA	1,14 cA	1,16 c
CD 3612 PW	1,34 aA	1,16 cB	1,25 c
CD 3770 PW	1,13 cA	1,12 cA	1,13 c
CD 3880 PW	1,17 cA	1,14 cA	1,16 d
DKB 230 PRO3	1,38 aA	1,09 cB	1,24 c
DKB 290 PRO3	1,16 cB	1,31 aA	1,24 c
DKB 310 PRO3	1,28 bA	1,33 aA	1,31 b
DKB 390 PRO3	1,35 aA	1,40 aA	1,38 b
2B688 PW	1,13 cA	1,19 bA	1,16 c
AL Avaré	1,32 bA	1,37 aA	1,35 b
CBT 11	1,32 bA	1,22 bA	1,27 c
2M60	1,36 aA	1,39 aA	1,38 b
2M77	1,27 bA	1,26 bA	1,27 c
2M88	1,22 cA	1,19 bA	1,21 c
2M99 VIP	1,26 bA	1,21 bA	1,24 (
2M80	1,33 bA	1,33 aA	1,33 b
3M40	1,37 aA	1,28 bA	1,33 b
3M51	1,31 bA	1,32 aA	1,32 b
Land 229	1,31 bA	1,09 cB	1,20 c
Land 356	1,05 dA	0,98 dA	1,02 e
Land 468	1,33 bA	1,13 cB	1,23 c
Land 544	1,09 dA	1,11 cA	1,10 c
LG 3055 PRO	1,42 aA	1,33 aA	1,38 b
LG 6033 PRO2	1,28 bA	1,23 bA	1,26 c
LG 6036 PRO3	1,38 aA	1,24 bB	1,31 k
MG 600 PW	1,26 bA	1,15 cA	1,21 0
2830 VYH	1,13 cA	1,08 cA	1,11 c
30531 VYH	1,52 aA	1,46 aA	1,49 a
3380 HR	1,35 aA	1,29 aA	1,32 b
3456 VYH	1,20 cA	1,06 cB	1,13 c
SHS 5070	1,21 cA	1,20 bA	1,21 (
SHS 7990 PRO2	1,36 aA	1,26 bA	1,31 b
Formula	1,01 dA	0,97 dA	0,99 e
Supremo	1,21 cA	1,13 cA	1,17 c
Syn 5T78	1,31 bA	1,22 bA	1,27 c
SX 7634 VIP3	1,24 bA	1,10 cB	1,17 c
SX 8004 VIP 3	1,13 cA	1,00 dB	1,07 c
Balu 460	1,02 dA	0,94 dA	0,98 e
Balu 787	1,06 dA	0,85 dB	0,96 €
Média	1,25 A	1,19 B	

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 4. População de Plantas em função dos níveis tecnológicos e híbridos testados na cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde, 2017.

Média Tecnologia 57.639 bA 53.473 bA 56.945 bB 61.806 aA 63.195 aA 56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	55.209 55.209 60.417 60.070 58.681 61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514 59.028
53.473 bA 56.945 bB 61.806 aA 63.195 aA 56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 66.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	55.209 60.417 60.070 58.681 61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514 59.028
56.945 bB 61.806 aA 63.195 aA 56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	60.417 60.070 58.681 61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
61.806 aA 63.195 aA 56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	60.070 58.681 61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514 59.028
63.195 aA 56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	58.681 61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
56.250 bB 59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	61.111 58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
59.722 aA 54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 66.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	58.334 54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514 59.028
54.861 bA 66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 66.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 63.889 aA	54.514 67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
66.667 aA 55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 66.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	67.362 53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
55.556 bA 54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	53.820 60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
54.862 bB 63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA	60.765 62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
63.889 aA 58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	62.153 56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
58.334 bA 61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 63.889 aA	56.251 63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
61.111 aA 56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA	63.542 55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
56.250 bA 59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	55.903 56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
59.723 aA 58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA	56.945 62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
58.334 bB 56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	62.501 61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
56.945 bB 61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	61.806 58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
61.111 aA 55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	58.334 55.556 64.583 57.639 56.598 57.639 62.848 54.514
55.556 bA 63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	55.556 64.583 57.639 56.598 57.639 62.848 54.514
63.194 aA 60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	64.583 57.639 56.598 57.639 62.848 54.514 59.028
60.417 aA 54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	57.639 56.598 57.639 62.848 54.514 59.028
54.167 bA 59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	56.598 57.639 62.848 54.514 59.028
59.028 bA 60.417 aA 54.861 bA 59.028 bA 63.889 aA	57.639 62.848 54.514 59.028
60.417 aA 54.861 bA 59.028 bA 63.889 aA	62.848 54.514 59.028
54.861 bA 59.028 bA 63.889 aA	54.514 59.028
59.028 bA 63.889 aA	59.028
63.889 aA	
	63 542
	05.572
55.556 bA	54.167
57.639 bA	57.292
58.334 bB	62.501
58.334 bA	57.640
61.806 aA	57.292
56.945 bB	60.765
57.639 bA	56.945
56.945 bA	58.334
59.723 aB	63.195
56.250 bA	57.986
56.945 bA	55.556
59.722 aA	61.806
60.417 aA	59.028
53.473 bA	52.779
61.806 aA	62.848
56.250 bA	56.598
54.862 bA	55.209
62.500 aA	63.889
	65.626
64.584 aA	57.292
64.584 aA 57.639 bA	57.292
	31.232
57.639 bA	63.542
	61.806 aA 56.250 bA 54.862 bA 62.500 aA 64.584 aA 57.639 bA

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 5. Massa de mil grãos em função dos níveis tecnológicos e híbridos testados na cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde, 2017.

Híbridos —	Massa de Mil Grãos (g)		— Médi
	Alta Tecnologia	Média Tecnologia	
AG 8061 PRO2	297,7 cA	310,3 cA	304,0 (
AG 8088 PRO2	351,7 aA	353,2 aA	352,5 l
AG 8690 PRO3	358,4 aA	376,5 aA	367,5 a
AG 8700 PRO3	329,6 bA	340,2 bA	334,9
AS 1555 PRO3	313,8 bA	298,8 cA	306,3
AS 1596 PRO3	295,8 cA	312,4 cA	304,1 (
AS 1633 PRO3	353,2 aA	362,1 aA	357,7 a
AS 1656 PRO3	352,6 aA	340,6 bA	346,6 l
BG 7037 YHR	327,5 bA	331,7 bA	329,6
BG 7439 H	330,7 bA	324,4 bA	327,6
BG 7640 VYH	300,4 cA	316,3 cA	308,4
CD 3410 PW	308,4 cA	305,5 cA	307,0 (
CD 3612 PW	342,7 aA	350,7 aA	346,7 l
CD 3770 PW	307,0 cA	306,1 cA	306,6
CD 3880 PW	261,9 dA	262,8 dA	262,4
DKB 230 PRO3	333,6 bA	301,6 cB	317,6
DKB 290 PRO3	287,7 dB	355,9 aA	321,8
DKB 310 PRO3	305,9 cA	324,5 bA	315,2
DKB 390 PRO3	313,2 bA	302,7 cA	308,0 (
2B688 PW	278,8 dA	295,2 cA	287,0 (
AL Avaré	329,1 bA	346,7 aA	337,9 l
CBT 11	316,0 bA	307,0 cA	311,5
2M60	283,2 dB	305,6 cA	294,4
2M77	295,4 cA	316,3 cA	305,9
2M88	300,9 cA	295,6 cA	298,3 (
2M99 VIP	272,0 dA	286,7 dA	279,4 6
2M80	300,1 cB	323,9 bA	312,0
3M40	309,5 cA	322,9 bA	316,2
3M51	319,6 bA	312,5 cA	316,1
Land 229	304,7 cA	295,0 cA	299,9
Land 356	268,7 dA	267,7 dA	268,2
Land 468	343,9 aA	346,0 aA	345,0 l
Land 544	287,5 dA	269,1 dA	278,3 6
LG 3055 PRO	326,7 bB	363,5 aA	345,1 l
LG 6033 PRO2	325,1 bA	313,6 cA	319,4
LG 6036 PRO3	330,7 bA	317,6 cA	324,2
MG 600 PW	302,9 cA	314,6 cA	308,8
2830 VYH	331,7 bA	331,2 bA	331,5
30531 VYH	346,9 aA	343,3 aA	345,1 8
3380 HR	305,7 cA	311,0 cA	308,4 (
3456 VYH	292,6 cA	295,0 cA	293,8
SHS 5070	333,9 bA	295,0 CA 298,0 CB	
SHS 7990 PRO2			316,0
	308,6 cA	319,0 cA	313,8
Formula	273,9 dA	285,2 dA	279,6
Supremo	307,7 cB	331,0 bA	319,4
Syn 5T78	326,0 bA	323,5 bA	324,8
SX 7634 VIP3	274,9 dA	276,4 dA	275,7 (
SX 8004 VIP 3	281,5 dA	289,5 dA	285,5
Balu 460	260,6 dB	302,6 cA	281,6
Balu 787	276,4 dA	267,7 dA	272,1
Média	309,7 B	315,0 A	

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 6. Produtividade em função dos níveis tecnológicos e híbridos testados na cultura do milho em Lucas do Rio Verde, MT. Fundação Rio Verde, 2017.

Híbridos —	Produtividade (kg ha ⁻¹)		— Média
	Alta Tecnologia	Média Tecnologia	
AG 8061 PRO2	8.202,8 bA	8.626,7 aA	8.414,8 a
AG 8088 PRO2	8.552,6 bA	7.908,1 bA	8.230,4 k
AG 8690 PRO3	8.347,8 bA	8.289,8 aA	8.318,8 k
AG 8700 PRO3	8.729,8 aA	7.783,1 bA	8.256,5 k
AS 1555 PRO3	8.040,2 bA	8.123,0 bA	8.081,6
AS 1596 PRO3	9.324,2 aA	8.118,8 bB	8.721,5 8
AS 1633 PRO3	8.176,9 bA	8.241,5 aA	8.209,21
AS 1656 PRO3	7.759,1 cA	8.225,8 aA	7.992,5 k
BG 7037 YHR	9.035,1 aA	8.276,2 aA	8.655,7 a
BG 7439 H	9.532,9 aA	8.424,6 aB	8.978,8
BG 7640 VYH	8.413,7 bA	7.775,9 bA	8.094,81
CD 3410 PW	7.813,0 bA	7.690,0 bA	7.751,5 l
CD 3612 PW	9.077,3 aA	8.733,4 aA	8.905,4 a
CD 3770 PW	8.379,2 bA	8.429,7 aA	8.404,5
CD 3880 PW	8.085,9 bA	8.398,4 aA	8.242,21
DKB 230 PRO3	8.187,9 bA	7.643,6 bA	7.915,8 l
DKB 290 PRO3	8.046,0 bA	8.284,0 aA	8.165,0
DKB 310 PRO3	9.055,1 aA	7.939,8 bA	8.497,5
DKB 390 PRO3		8.568,9 aA	
	8.270,4 bA	•	8.419,7
2B688 PW	7.346,6 cA	8.087,5 bA	7.717,1
AL Avaré	6.707,1 cA	6.807,3 cA	6.757,2
CBT 11	7.619,1 cA	7.432,8 bA	7.526,0
2M60	9.566,0 aA	8.744,1 aA	9.155,1 a
2M77	7.843,5 bA	7.984,9 bA	7.914,2
2M88	9.011,7 aA	8.655,0 aA	8.833,4 8
2M99 VIP	7.177,8 cA	7.372,4 bA	7.275,1
2M80	7.901,1 bA	8.046,1 bA	7.973,6 l
3M40	9.121,8 aA	8.646,0 aA	8.883,9 a
3M51	8.264,5 bA	7.822,2 bA	8.043,4 l
Land 229	8.627,3 aA	7.542,4 bB	8.084,9 l
Land 356	7.237,6 cA	7.182,1 cA	7.209,9
Land 468	8.209,9 bA	8.229,2 aA	8.219,6 l
Land 544	7.311,5 cA	6.906,0 cA	7.108,8
LG 3055 PRO	8.870,8 aA	8.859,4 aA	8.865,1
LG 6033 PRO2	8.984,5 aA	8.631,9 aA	8.808,2
LG 6036 PRO3	9.214,1 aA	7.844,0 bB	8.529,1
MG 600 PW	8.869,6 aA	8.344,7 aA	8.607,2
2830 VYH	7.049,7 cA	6.684,1 cA	6.866,9
30531 VYH	7.659,9 cA	7.553,4 bA	7.606,7 l
3380 HR	8.789,3 aA	8.785,0 aA	8.787,2
3456 VYH	6.812,8 cA	5.685,8 dB	6.249,3 (
SHS 5070	7.245,3 cA	6.768,9 cA	7.007,1
SHS 7990 PRO2	8.964,6 aA	8.629,4 aA	8.797,0
Formula	7.990,0 bA	7.675,0 bA	7.832,5 l
Supremo	7.610,5 cA	6.987,7 cA	7.299,1
Syn 5T78	8.997,5 aA	8.548,2 aA	8.772,9
SX 7634 VIP3	6.674,7 cA	6.411,5 dA	6.543,1 (
SX 8004 VIP 3	5.829,2 dA	6.350,9 dA	6.090,1
Balu 460	5.661,6 dA	6.073,0 dA	5.867,3
Balu 787	5.992,6 dA	5.835,7 dA	5.914,2
Média	8.083,8 A	7.812,2 B	J.314,2 (
ivicuia		7.812,2 B	

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 7. Produtividade em função dos níveis tecnológicos e híbridos testados na cultura do milho e ganho ou perca de produtividade com a adocão da Alta Tecnologia em comparação com a Média Tecnologia. Fundação Rio Verde, 2017.

Híbridos —	Produtividade (sc ha ⁻¹)		Ganho/Perca	
Hibridos	Alta Tecnologia	Média Tecnologia	Gaillio/Feica	
AG 8061 PRO2	136,7	143,8	-7,1	
AG 8088 PRO2	142,6	131,8	+10,8	
AG 8690 PRO3	139,1	138,2	+0,9	
AG 8700 PRO3	145,5	129,7	+15,8	
AS 1555 PRO3	134,0	135,4	-1,4	
AS 1596 PRO3	155,4	135,3	+20,1	
AS 1633 PRO3	136,3	137,4	-1,1	
AS 1656 PRO3	129,3	137,1	-7,8	
BG 7037 YHR	150,6	137,9	+12,7	
BG 7439 H	158,9	140,4	+18,5	
BG 7640 VYH	140,2	129,6	+10,6	
CD 3410 PW	130,2	128,2	+2,0	
CD 3612 PW	151,3	145,6	+5,7	
CD 3770 PW	139,7	140,5	-0,8	
CD 3880 PW	134,8	140,0	-5,2	
DKB 230 PRO3	136,5	127,4	+9,1	
DKB 290 PRO3	134,1	138,1	-4,0	
DKB 310 PRO3	150,9	132,3	+18,6	
DKB 390 PRO3	137,8	142,8	-5,0	
2B688 PW	122,4	134,8	-12,4	
AL Avaré	111,8	113,4	-1,6	
CBT 11	127,0	123,9	+3,1	
2M60	159,5	145,8	+13,7	
2M77	130,7	133,1	-2,4	
2M88	150,2	144,3	+5,9	
2M99 VIP	119,6	122,9	-3,3	
2M80	131,7	134,1	-2,4	
3M40	152,0	144,1	+7,9	
3M51	137,8	130,4	+7,4	
Land 229	143,8	125,7	+18,1	
Land 356	120,6	119,7	+0,9	
Land 468	136,8	137,2	-0,4	
Land 544	121,9	115,1	+6,8	
LG 3055 PRO	147,8	147,7	+0,1	
LG 6033 PRO2	149,8	143,9	+5,9	
LG 6036 PRO3	153,6	130,8	+22,8	
MG 600 PW	147,8	139,1	+8,7	
2830 VYH	117,5	111,4	+6,1	
30531 VYH	127,7	125,9	+1,8	
3380 HR	146,5	146,4	+0,1	
3456 VYH	113,6	94,8	+18,8	
SHS 5070	120,8	112,8	+8,0	
SHS 7990 PRO2	149,4	143,8	+5,6	
Formula	133,2	127,9	+5,3	
Supremo	126,9	116,5	+10,4	
Syn 5T78	150,0	142,5	+7,5	
SX 7634 VIP3	111,3	106,9	+4,4	
SX 8004 VIP 3	97,2	105,9	-8,7	
Balu 460	94,4	101,2	-6,8	
Balu 787	99,9	97,3	+2,6	
Média	134,7	130,2	4,5	

Considerações Finais

- Todas as variáveis analisadas apresentaram interação entre os híbridos e adubações testadas, porém as maiores variações foram relacionadas aos diferentes híbridos de milho, poucos híbridos apresentaram diferença frente aos níveis tecnológicos adotados.

- A produtividade média dos híbridos para os dois níveis tecnológicos apresentaram resultados equivalentes à média de produtividade para a região, sendo que alguns materiais apresentaram maiores destaques de acordo com a adubação empregada, cabe ao produtor analisar a realidade da sua propriedade juntamente com outros fatores como clima, fertilidade do solo, preço dos insumos e preço de venda para poder tomar a correta decisão de qual hibrido e adubação empregar em sua lavoura, não podendo utilizar unicamente os resultados deste estudo na tomada de decisão.

Referências Bibliográficas

Empresa Brasileira de Pesquisa Agropecuária. **Sistema de Classificação de solos.** Rio de Janeiro, EMBRAPA – Solos, 2013. 353p.

FERREIRA, D. F. **SISVAR: Um programa para análises e ensino de estatística.** Revista Symposium (Lavras), v.6, p.36-41, 2008.

INSTITUTO MATO-GROSSENSE DE ECONOMIA AGROECUÁRIA – IMEA. Boletim Semana do Milho nº 454, 2017a. Disponível em http://www.imea.com.br/upload/publicacoes/arquivos/R404_454_BSMilho_REV_AO.pdf. Acessado em agosto de 2017.

INSTITUTO MATO-GROSSENSE DE ECONOMIA AGROECUÁRIA – IMEA. Boletim Semana do Milho nº 465, 2017b. Disponível em http://www.imea.com.br/upload/publicacoes/arquivos/R404_454_BSMilho_REV_AO.pdf. Acessado em agosto de 2017.

KÖPPEN, W.: Das geographisca System der Klimate, in: Handbuch der Klimatologie, edited by: Köppen, W. and Geiger, G., 1. C. Gebr, Borntraeger, 1–44, 1936.

Boletim Técnico Safra 2016/17 e Segunda Safra 2017

Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde Rodovia MT 449 – KM 08 – Caixa Postal 159 CEP: 78.455-000 – Lucas do Rio Verde – MT fundacao@fundacaorioverde.com.br www.fundacaorioverde.com.br Telefone: (65) 3549-1161

