

BOLETIM TÉCNICO 2015/16

Lucas do Rio Verde, MT Agosto, 2016

Autores

Rodrigo Pengo Rosa, M. Sc.

Engenheiro Agrônomo Fundação Rio Verde, MT rodrigopengo@fundacaorioverde.com.br

Fabio Kempim Pittelkow, D. Sc.

Engenheiro Agrônomo Fundação Rio Verde, MT fabio@fundacaorioverde.com.br

Rodrigo Marcelo Pasqualli

Engenheiro Agrônomo Fundação Rio Verde, MT rodrigo@fundacaorioverde.com.br

Objetivo

Avaliar os atributos agronômicos e a produtividade de híbridos de milho cultivados em segunda safra em dois níveis de tecnologia em Lucas do Rio Verde, Mato Grosso.

Materiais e Métodos

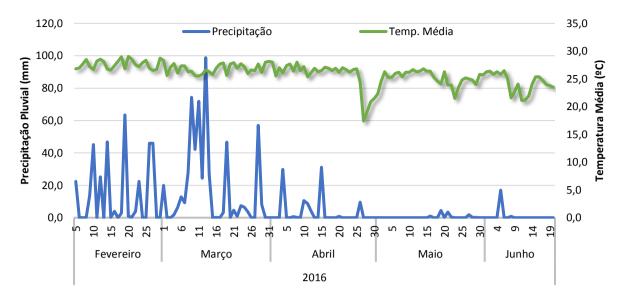

O experimento foi instalado nas dependências da Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde, localizada entre as coordenadas geográficas 13°00'27" S - 55°58'07" W e 12°59'34" S -55°57′50" W, com altitude média de 387 metros, no município de Lucas do Rio Verde - MT, em um LATOSSOLO VERMELHO Amarelo distrófico de textura argilosa, em semeadura direta sobre a palhada residual da cultura da soja. Foi utilizado o delineamento inteiramente casualizado com quatro repetições para a instalação do ensaio, cada parcela foi composta por 1,8 metros de largura contendo 4 linhas de semeio no espaçamento de 0,45 metros por 5,0 metros de comprimento, totalizando 9,0 m² por parcela e 36,0 m² por tratamento. O semeio foi realizado dia 15/02/2016 utilizando 50 híbridos de milho em duas adubações, para a Alta Tecnologia a adubação de base foi com 250 kg ha⁻¹ do formulado 07-20-20 mais duas aplicações de ureia na dose de 100 kg ha⁻¹ nos estádios V3/V4 e V5, para a Média Tecnologia foi aplicado 200 kg ha⁻¹ do formulado 20-00-20 em cobertura no estádio V5. Os híbridos empregados no ensaio com a cultura do milho estão descritos na Tabela 1 e os dados de precipitação ocorridos a 10 dias antes da instalação do ensaio até a colheita estão apresentados na Figura 1.

Tabela 1. Descrição dos tratamentos utilizados no experimento com a cultura do milho em Lucas do Rio Verde, MT, 2016.

MT, 2016. № Trat.	Empresa	Híbrido
1	Advanta	ADV 9434 PRO2
2	Advanta	PAC 105
3	Agroceres	AG 7088 PRO3
4	Agroceres	AG 8061 PRO2
5	Agroceres	AG 8088 PRO2
6	Agroeste	AS 1633 PRO2
7	Agroeste	AS 1656 PRO3
8	Balu	198
9	Balu	293
10	Balu	297
11	Balu	332
12	Balu	434
13	Balu Balu	445
14	Balu	787
15	Biogene	BG 7037 HX
16	Biogene	BG 7439 HX
17	Biogene	BG 7542 HX
18	Biomatrix	BM 812 PRO2
19	Biomatrix	BM 815
20	Coodetec	CD 3612 PW
21	Coodetec	CD 3775 PW
22	Dekalb	DKB 177 RR2
23	Dekalb	DKB 290 PRO3
24	Dekalb	DKB 390 PRO2
25	Dow	2A401 PW
26	Dow	2B 610 PW
27	Dow	2B633 PW
28	Dow	2B810 PW
29	Dow	DS 2505 PW
30	Jmen	1m3m40
31	Jmen	2m60
32	Jmen	2m77
33	Jmen	2m80
34	Jmen	2m88
35	Jmen	3m51
36	Jmen	4m50
37	LG	LG 3055 PRO
38	LG	LG 6033 PRO2
39	LG	LG 6038 PRO2
40	Macro Seed	7G17 VIP
41	Macro Seed	SZ 7030 VIP3
42	Morgan	MG 580 PW
43	Morgan	MG 652 PW
44	Morgan	MG 699 PW
45	Morgan	MG 744 PW
46	Santa Helena	2B647 PW
47	Santa Helena	SHS 7930 PRO2
48	Syngenta	Formula Viptera
49	Syngenta	Supremo Viptera
50	Syngenta	Syn 5T78 VIP3
30	Syrigerica	Jy11 J170 VIF3

Figura 1. Temperatura Média e Precipitação ocorridos 10 dias antes da instalação do ensaio até a colheita, com acumulado de 1023,8 mm de precipitação no período. Fundação Rio Verde, 2016.

Para o controle de pragas foi realizada duas aplicações de Galil SC na dosagem de 0,3 L ha⁻¹ e duas aplicações de Nomolt 150 na dosagem de 0,1 L ha⁻¹. O controle de plantas daninhas foi realizado com uma aplicação de Roundup WG na dosagem de 2,0 Kg ha⁻¹, uma aplicação de Gesaprin 500 na dosagem de 1,5 kg ha⁻¹ e uma aplicação de Soberan na dosagem de 0,24 L ha⁻¹. Para o controle de doenças foi realizada uma aplicação de Opera Ultra na dosagem de 0,5 L ha⁻¹.

Abaixo estão descritas as avaliações realizadas durante a condução do ensaio.

<u>Altura de Plantas:</u> Altura de duas plantas aleatórias dentro de cada parcela, medindo do nível do solo até a inserção da folha bandeira, avaliação realizada no final do ciclo da cultura;

Altura de Inserção da Espiga: Altura de duas plantas aleatórias dentro de cada parcela, medindo do nível do solo até a inserção da espiga principal, avaliação realizada no final do ciclo da cultura;

<u>População de Plantas:</u> Contagem de plantas presentes em 4 metros lineares, realizado em cada parcela, e convertido para unidade de área padrão, avaliação realizada no final do ciclo da cultura;

<u>Massa de Mil Grãos:</u> Realizado após a colheita e trilhagem das parcelas, pesagem de 100 grãos de milho por parcela, convertidos para massa de mil grãos, com umidade de comercialização padrão de 13%;

<u>Produtividade:</u> Peso dos grãos de milho colhidos, que foi composta por duas linhas de 5 metros cada, convertidos para unidade de área com umidade de comercialização padrão de 13%.

Posteriormente os dados foram submetidos à análise de variância no esquema fatorial 50x2, sendo 50 híbridos de milho e 2 níveis de tecnologia empregados e comparação de médias pelo Teste de Skott-Knott ao nível de 5% de probabilidade através do programa computacional Sisvar 5.6 (Ferreira, 2008).

Resultados e Discussão

Somente sete híbridos apresentaram resposta positiva a uma maior adubação para a altura de plantas, sendo a maior diferença observada para o híbrido 2m80, que apresentou um ganho de 18,1 centímetros quando cultivado com a Alta Tecnologia (Tabela 2), este mesmo híbrido também apresentou o maior ganho entre as tecnologias empregadas para a altura de inserção da espiga, apresentando uma espiga 21,9 centímetros mais alta quando cultivado com a Alta Tecnologia (Tabela 3).

A população média para as tecnologias empregadas foi estatisticamente igual, sendo para a Alta Tecnologia de 57.222 pl ha⁻¹ e para a Média Tecnologia de 57.389 pl ha⁻¹, porém quinze híbridos apresentaram uma maior variação entre as populações, sendo detectada diferença estatística entre elas, a maior diferença observada foi de 0,56 plantas por metro linear para os híbridos AS 1633 PRO2 e Supremo Viptera, sendo para o AS 1633 PRO2 a maior população observada para a Média Tecnologia e para o Supremo Viptera a maior população observada para a Alta Tecnologia (Tabela 4).

A média da massa de mil grãos entre os híbridos testados foi estatisticamente superior para a Média Tecnologia empregada, sendo a maior diferença observada para o híbrido Supremo Viptera, que obteve 46,9 gramas a mais quando cultivado com a Média Tecnologia (Tabela 5).

A maioria dos híbridos testados não apresentou resposta estatística significativa para o aporte de adubação, sendo observada diferença estatística somente para seis híbridos, dois quais três apresentaram uma maior produtividade quando cultivados com a Média Tecnologia sendo o AS 1633 PRO2, SZ 7030 VIP3 e Supremo Viptera, e os híbridos 445, MG 580 PW e MG 699 PW foram os que apresentaram resposta positiva ao aporte de adubação (Tabela 6).

Tabela 2. Altura de Plantas em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

Tratamentos		Altura de	Altura de Plantas (cm)	
Empresa	Híbridos	Alta Tecnologia	Média Tecnologia	Média
Advanta	ADV 9434 PRO2	226,3 bA	230,0 bA	228,2 b
Advanta	PAC 105	223,8 cA	219,4 cA	221,6 c
Agroceres	AG 7088 PRO3	226,3 bA	226,9 bA	226,6 b
Agroceres	AG 8061 PRO2	213,1 dA	220,0 cA	216,6 c
Agroceres	AG 8088 PRO2	216,9 cA	219,4 cA	218,2 c
Agroeste	AS 1633 PRO2	221,9 cA	227,5 bA	224,7 b
Agroeste	AS 1656 PRO3	237,5 aA	238,8 aA	238,2 a
Balu	198	235,6 aA	232,5 aA	234,1 a
Balu	293	235,0 aA	236,3 aA	235,7 a
Balu	297	233,8 aA	233,1 aA	233,5 a
Balu	332	204,4 dA	208,8 dA	206,6 d
Balu	434	231,3 bA	230,0 bA	230,7 b
Balu	445	226,9 bA	228,8 bA	227,9 b
Balu	787	223,1 cA	228,1 bA	225,6 b
Biogene	BG 7037 HX	221,3 cA	220,6 cA	221,0 c
Biogene	BG 7439 HX	232,5 bA	240,6 aA	236,6 a
Biogene	BG 7542 HX	223,8 cA	218,8 cA	230,0 a 221,3 c
Biomatrix	BM 812 PRO2	211,9 dA	216,3 cA	214,1 d
Biomatrix	BM 815	210,0 dA	215,0 cA	212,5 d
Coodetec	CD 3612 PW	221,9 cA	221,9 cA	212,5 u 221,9 c
Coodetec	CD 3775 PW	216,9 cA	218,8 cA	217,9 c
Dekalb	DKB 177 RR2	211,9 dA	208,8 dA	217,9 C 210,4 d
Dekalb	DKB 290 PRO3	230,6 bA		210,4 u 231,6 a
Dekalb	DKB 290 PRO3	216,9 cA	232,5 aA	
			218,1 cA	217,5 c
Dow	2A401 PW	208,1 dA	205,0 dA	206,6 d
Dow	2B 610 PW	220,6 cA	215,6 cA	218,1 c
Dow	2B633 PW	212,5 dA	208,1 dA	210,3 d
Dow	2B810 PW	220,6 cA	214,4 cA	217,5 c
Dow	DS 2505 PW	238,8 aA	228,1 bB	233,5 a
Jmen	1m3m40	235,0 aA	231,3 aA	233,2 a
Jmen	2m60	231,3 bA	223,8 bA	227,6 b
Jmen	2m77	236,9 aA	220,6 cB	228,8 b
Jmen	2m80	235,0 aA	216,9 cB	226,0 b
Jmen	2m88	210,6 dA	206,3 dA	208,5 d
Jmen	3m51	229,4 bA	225,6 bA	227,5 b
Jmen	4m50	224,4 bA	220,6 cA	222,5 c
LG	LG 3055 PRO	231,3 bA	226,3 bA	228,8 b
LG	LG 6033 PRO2	228,8 bA	220,6 cA	224,7 b
LG	LG 6038 PRO2	244,4 aA	233,1 aB	238,8 a
Macro Seed	7G17 VIP	228,1 bA	215,6 cB	221,9 c
Macro Seed	SZ 7030 VIP3	227,5 bA	225,0 bA	226,3 b
Morgan	MG 580 PW	216,9 cA	206,3 dB	211,6 d
Morgan	MG 652 PW	215,6 cA	210,6 dA	213,1 d
Morgan	MG 699 PW	227,5 bA	217,5 cB	222,5 c
Morgan	MG 744 PW	228,1 bA	223,1 bA	225,6 b
Santa Helena	2B647 PW	219,4 cA	213,1 dA	216,3 c
Santa Helena	SHS 7930 PRO2	212,5 dA	210,6 dA	211,6 d
Syngenta	Formula Viptera	220,6 cA	217,5 cA	219,1 c
Syngenta	Supremo Viptera	223,1 cA	226,3 bA	224,7 b
Syngenta	Syn 5T78 VIP3	230,0 bA	221,3 cA	225,7 b
	лédia .	224,2 A	221,5 B	222,8
	de Variação (%)		2,8	,

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 3. Altura de Inserção da Espiga em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

	amentos	•	ção da Espiga (cm)	Média	
Empresa	Híbridos	Alta Tecnologia	Média Tecnologia		
Advanta	ADV 9434 PRO2	110,6 aA	109,4 aA	110,0 a	
Advanta	PAC 105	111,9 aA	108,8 aA	110,4 a	
Agroceres	AG 7088 PRO3	111,3 aA	108,1 aA	109,7 a	
Agroceres	AG 8061 PRO2	104,4 bA	102,5 aA	103,5 c	
Agroceres	AG 8088 PRO2	91,3 bA	95,0 bA	93,2 d	
Agroeste	AS 1633 PRO2	103,8 bA	106,9 aA	105,4 b	
Agroeste	AS 1656 PRO3	111,3 aA	110,6 aA	111,0 a	
Balu	198	106,3 bA	106,9 aA	106,6 b	
Balu	293	111,3 aA	109,4 aA	110,4 a	
Balu	297	117,5 aA	107,5 aB	112,5 a	
Balu	332	100,0 bA	102,5 aA	101,3 c	
Balu	434	97,5 bA	99,4 bA	98,5 d	
Balu	445	106,3 bA	103,8 aA	105,1 b	
Balu	787	98,1 bA	96,9 bA	97,5 d	
Biogene	BG 7037 HX	95,6 bA	88,8 bA	92,2 d	
Biogene	BG 7439 HX	115,0 aA	121,9 aA	118,5 a	
Biogene	BG 7542 HX	103,8 bA	96,9 bA	100,4 c	
Biomatrix	BM 812 PRO2	103,8 bA	104,4 aA	104,1 c	
Biomatrix	BM 815	101,9 bA	100,0 bA	101,0 c	
Coodetec	CD 3612 PW	111,9 aA	102,5 aA	107,2 b	
Coodetec	CD 3775 PW	107,5 aA	102,5 aA 100,0 bA	107,2 b	
Dekalb	DKB 177 RR2	100,6 bA	98,8 bA	99,7 c	
Dekalb	DKB 290 PRO3	108,1 aA	106,9 aA	107,5 b	
Dekalb	DKB 390 PRO2	113,1 aA	110,0 aA	111,6 a	
Dow	2A401 PW	99,4 bA	96,9 bA	98,2 d	
Dow	2B 610 PW	106,3 bA	101,9 aA	104,1 c	
Dow	2B633 PW	96,9 bA	89,4 bA	93,2 d	
Dow	2B810 PW	98,1 bA	88,8 bA	93,5 d	
Dow	DS 2505 PW	115,0 aA	112,5 aA	113,8 a	
Jmen	1m3m40	115,0 aA	105,0 aB	110,0 a	
Jmen	2m60	108,8 aA	103,1 aA	106,0 b	
Jmen	2m77	110,0 aA	100,0 bB	105,0 b	
Jmen	2m80	116,9 aA	95,0 bB	106,0 b	
Jmen	2m88	100,0 bA	93,8 bA	96,9 d	
Jmen	3m51	108,8 aA	101,9 aA	105,4 b	
Jmen	4m50	113,8 aA	106,3 aA	110,1 a	
LG	LG 3055 PRO	116,9 aA	110,0 aA	113,5 a	
LG	LG 6033 PRO2	104,4 bA	96,3 bA	100,4 c	
LG	LG 6038 PRO2	111,3 aA	108,1 aA	109,7 a	
Macro Seed	7G17 VIP	109,4 aA	99,4 bB	104,4 b	
Macro Seed	SZ 7030 VIP3	108,1 aA	103,1 aA	105,6 b	
Morgan	MG 580 PW	112,5 aA	93,1 bB	102,8 c	
Morgan	MG 652 PW	104,4 bA	100,6 bA	102,5 c	
Morgan	MG 699 PW	114,4 aA	98,8 bB	106,6 b	
Morgan	MG 744 PW	114,4 aA	104,4 aB	109,4 a	
anta Helena	2B647 PW	105,6 bA	98,8 bA	102,2 c	
anta Helena	SHS 7930 PRO2	106,3 bA	100,6 bA	103,5 c	
Syngenta	Formula Viptera	101,3 bA	95,0 bA	98,2 d	
Syngenta	Supremo Viptera	96,9 bA	105,0 aA	101,0 c	
Syngenta	Syn 5T78 VIP3	119,4 aA	102,5 aB	111,0 a	
	лédia	107,1 A	102,3 dB	104,70	

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 4. População Final de Plantas em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

Trat	amentos	População de Plantas (pl ha ⁻¹)		844415
Empresa	Híbridos	Alta Tecnologia	Média Tecnologia	Média
Advanta	ADV 9434 PRO2	59.722 bA	56.944 cA	58.333 b
Advanta	PAC 105	51.389 cA	52.778 cA	52.083 d
Agroceres	AG 7088 PRO3	55.556 cB	66.667 aA	61.111 a
Agroceres	AG 8061 PRO2	56.944 cA	55.556 cA	56.250 c
Agroceres	AG 8088 PRO2	54.167 cA	58.333 cA	56.250 c
Agroeste	AS 1633 PRO2	54.167 cB	66.667 aA	60.417 b
Agroeste	AS 1656 PRO3	52.778 cA	56.944 cA	54.861 c
Balu	198	56.944 cA	54.167 cA	55.556 c
Balu	293	54.167 cB	61.111 bA	57.639 b
Balu	297	63.889 aA	54.167 cB	59.028 b
Balu	332	56.944 cA	59.722 bA	58.333 b
Balu	434	59.722 bA	59.722 bA	59.722 b
Balu	445	63.889 aA	55.556 cB	59.722 b
Balu	787	45.833 cB	56.944 cA	51.389 d
Biogene	BG 7037 HX	54.167 cB	63.889 aA	59.028 b
Biogene	BG 7439 HX	59.722 bA	56.944 cA	58.333 b
_			58.333 cA	56.250 c
Biogene	BG 7542 HX	54.167 cA		60.417 b
Biomatrix	BM 812 PRO2	62.500 bA	58.333 cA	
Biomatrix	BM 815	54.167 cA	58.333 cA	56.250 c
Coodetec	CD 3612 PW	63.889 aA	63.889 aA	63.889 a
Coodetec	CD 3775 PW	52.778 cA	52.778 cA	52.778 d
Dekalb	DKB 177 RR2	54.167 cA	55.556 cA	54.861 c
Dekalb	DKB 290 PRO3	62.500 bA	56.944 cA	59.722 b
Dekalb	DKB 390 PRO2	54.167 cB	63.889 aA	59.028 b
Dow	2A401 PW	52.778 cA	56.944 cA	54.861 c
Dow	2B 610 PW	54.167 cA	56.944 cA	55.556 c
Dow	2B633 PW	63.889 aA	59.722 bA	61.806 a
Dow	2B810 PW	55.556 cA	55.556 cA	55.556 c
Dow	DS 2505 PW	51.389 cA	55.556 cA	53.472 d
Jmen	1m3m40	61.111 bA	56.944 cA	59.028 b
Jmen	2m60	66.667 aA	58.333 cB	62.500 a
Jmen	2m77	50.000 cA	55.556 cA	52.778 d
Jmen	2m80	52.778 cA	52.778 cA	52.778 d
Jmen	2m88	65.278 aA	54.167 cB	59.722 b
Jmen	3m51	56.944 cA	56.944 cA	56.944 c
Jmen	4m50	50.000 cA	55.556 cA	52.778 d
LG	LG 3055 PRO	59.722 bA	54.167 cA	56.944 c
LG	LG 6033 PRO2	59.722 aA	52.778 cB	56.250 c
LG	LG 6038 PRO2	55.556 cA	54.167 cA	54.861 c
Macro Seed	7G17 VIP	56.944 cA	51.389 cA	54.167 c
Macro Seed	SZ 7030 VIP3	48.611 cA	51.389 cA	50.000 d
Morgan	MG 580 PW	63.889 aA	59.722 bA	61.806 a
Morgan	MG 652 PW	52.778 cA	56.944 cA	54.861 c
Morgan	MG 699 PW	61.111 bA	52.778 cB	56.944 c
Morgan	MG 744 PW	54.167 cB	61.111 bA	57.639 b
Santa Helena	2B647 PW	66.667 aA	56.944 cB	61.806 a
Santa Helena	SHS 7930 PRO2	61.111 bA	66.667 aA	63.889 a
Syngenta	Formula Viptera	55.556 cA	56.944 cA	56.250 c
Syngenta	Supremo Viptera	68.056 aA	55.556 cB	61.806 a
Syngenta	Syn 5T78 VIP3	58.333 bA	59.722 bA	59.028 b
	Média	57.222 A	57.389 A	57.306
	de Variação (%)	JI.LLL A	7,5	37.300

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 5. Massa de Mil Grãos em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

•	amentos Híbridos	Alta Tecnologia	Mil Grãos (g) Média Tecnologia	Média
Empresa				252.0 -
Advanta	ADV 9434 PRO2	244,4 eA	261,2 dA	252,8 e
Advanta	PAC 105	313,7 bA	278,8 cB	296,3 c
Agroceres	AG 7088 PRO3	237,1 eA	250,2 dA	243,6 e
Agroceres	AG 8061 PRO2	319,0 bA	322,2 aA	320,6 b
Agroceres	AG 8088 PRO2	275,7 dA	265,9 cA	270,8 d
Agroeste	AS 1633 PRO2	353,8 aA	340,0 aA	346,9 a
Agroeste	AS 1656 PRO3	291,2 cA	305,0 bA	298,1 c
Balu	198	266,9 dA	274,0 cA	270,5 d
Balu	293	236,9 eA	241,9 dA	239,4 e
Balu	297	268,5 dA	280,0 cA	274,2 d
Balu	332	247,3 eA	253,2 dA	250,3 e
Balu	434	258,2 dA	263,6 cA	260,9 e
Balu	445	284,2 cA	303,5 bA	293,8 c
Balu	787	304,3 cA	286,5 bA	295,4 c
Biogene	BG 7037 HX	270,9 dA	286,0 bA	278,5 d
Biogene	BG 7439 HX	284,1 cA	303,8 bA	293,9 c
Biogene	BG 7542 HX	302,3 cA	307,8 bA	305,0 c
Biomatrix	BM 812 PRO2	247,2 eA	248,4 dA	247,8 e
Biomatrix	BM 815	292,8 cA	265,8 cB	279,3 d
Coodetec	CD 3612 PW	296,2 cA	301,6 bA	298,9 с
Coodetec	CD 3775 PW	300,5 cA	304,5 bA	302,5 c
Dekalb	DKB 177 RR2	292,1 cA	270,2 cA	281,1 d
Dekalb	DKB 290 PRO3	305,6 cA	312,3 aA	308,9 b
Dekalb	DKB 390 PRO2	276,4 dA	271,2 cA	273,8 d
Dow	2A401 PW	277,5 dA	291,5 bA	284,5 c
Dow	2B 610 PW	280,8 cA	271,6 cA	276,2 d
Dow	2B633 PW	280,3 cA	293,9 bA	287,1 c
Dow	2B810 PW	244,0 eA	255,2 dA	249,6 e
Dow	DS 2505 PW	297,3 cA	290,5 bA	293,9 c
Jmen	1m3m40	268,0 dA	260,9 dA	264,4 d
Jmen	2m60	235,9 eB	263,4 cA	249,7 e
Jmen	2m77	275,1 dA	275,1 cA	275,1 d
Jmen	2m80	268,3 dA	278,2 cA	273,1 d 273,2 d
Jmen	2m88	270,3 dA	280,6 cA	275,2 d 275,4 d
			'_	
Jmen	3m51 4m50	269,3 dA	272,5 cA	270,9 d
Jmen		287,5 cA	301,8 bA	294,7 c 311,7 b
LG	LG 3055 PRO	304,8 cA	318,6 aA	-
LG	LG 6033 PRO2	274,3 dA	283,5 cA	278,9 d
LG	LG 6038 PRO2	275,9 dA	275,2 cA	275,6 d
Macro Seed	7G17 VIP	259,8 dA	281,8 cA	270,8 d
Macro Seed	SZ 7030 VIP3	257,7 dB	295,9 bA	276,8 d
Morgan	MG 580 PW	286,4 cA	298,4 bA	292,4 c
Morgan	MG 652 PW	318,7 bA	310,6 aA	314,6 b
Morgan	MG 699 PW	288,7 cA	298,0 bA	293,4 c
Morgan	MG 744 PW	298,5 cA	298,8 bA	298,6 c
Santa Helena	2B647 PW	289,8 cA	298,2 bA	294,0 с
Santa Helena	SHS 7930 PRO2	260,4 dA	243,4 dA	251,9 e
Syngenta	Formula Viptera	285,6 cA	271,1 cA	278,4 d
Syngenta	Supremo Viptera	255,7 eB	302,6 bA	279,2 d
Syngenta	Syn 5T78 VIP3	271,4 dA	289,4 bA	280,4 d
N	∕lédia	279,0 B	284,0 A	281,5

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 6. Produtividade da cultura em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

ırat	amentos	•	dade (kg ha ⁻¹)	Média
Empresa	Híbridos	Alta Tecnologia	Média Tecnologia	Wicaia
Santa Helena	2B647 PW	9.397,3 aA	8.513,8 aA	8.955,5 a
Morgan	MG 744 PW	8.588,5 aA	8.826,7 aA	8.707,6 a
Dow	DS 2505 PW	8.753,1 aA	8.646,7 aA	8.699,9 a
Morgan	MG 699 PW	9.252,7 aA	8.111,7 aB	8.682,2 a
Morgan	MG 580 PW	9.049,5 aA	7.829,3 aB	8.439,4 a
Dow	2B 610 PW	8.610,6 aA	7.948,7 aA	8.279,6 a
Coodetec	CD 3612 PW	8.342,4 bA	8.167,0 aA	8.254,7 a
LG	LG 3055 PRO	8.096,7 bA	8.155,2 aA	8.125,9 b
Dow	2B633 PW	8.158,2 bA	8.052,6 aA	8.105,4 b
Syngenta	Formula Viptera	8.132,4 bA	8.057,0 aA	8.094,7 b
Biogene	BG 7439 HX	8.081,4 bA	8.067,8 aA	8.074,6 b
Syngenta	Syn 5T78 VIP3	7.568,1 bA	8.412,3 aA	7.990,2 b
Dow	2B810 PW	8.247,8 bA	7.654,4 aA	7.951,1 b
Agroceres	AG 7088 PRO3	7.592,7 bA	8.259,6 aA	7.926,2 b
Agroceres	AG 8061 PRO2	7.615,3 bA	7.989,1 aA	7.802,2 b
Dekalb	DKB 290 PRO3	7.872,2 bA	7.704,3 aA	7.788,3 b
Morgan	MG 652 PW	7.717,5 bA	7.795,5 aA	7.756,5 b
Biogene	BG 7542 HX	7.206,3 cA	7.811,7 aA	7.509,0 b
Agroeste	AS 1633 PRO2	6.778,0 cB	8.230,1 aA	7.504,1 b
Coodetec	CD 3775 PW	7.670,8 bA	7.305,0 bA	7.487,9 b
Jmen	2m88	7.644,0 bA	7.177,5 bA	7.410,7 b
Agroeste	AS 1656 PRO3	7.378,5 cA	7.177,5 bA 7.335,6 bA	7.410,7 b
Dow	2A401 PW	6.895,5 cA	7.642,8 aA	7.337,0 C
LG	LG 6033 PRO2	7.232,7 cA	7.042,8 aA 7.294,3 bA	7.263,5 c
Agroceres	AG 8088 PRO2	6.990,3 cA	7.411,6 aA	7.203,5 C 7.201,0 c
_			·	
Santa Helena	SHS 7930 PRO2	7.294,1 cA	6.974,0 bA	7.134,1 c
LG Dakalh	LG 6038 PRO2	7.324,2 cA	6.869,3 bA	7.096,8 c
Dekalb	DKB 390 PRO2	7.126,7 cA	7.059,4 bA	7.093,1 c
Jmen	2m80	6.772,8 cA	7.241,1 bA	7.006,9 c
Jmen	2m77	6.878,2 cA	7.131,7 bA	7.004,9 c
Syngenta	Supremo Viptera	6.271,9 dB	7.730,7 aA	7.001,3 c
Jmen	2m60	7.240,3 cA	6.726,2 bA	6.983,3 c
Jmen	1m3m40	7.222,3 cA	6.662,6 bA	6.942,4 c
Balu	434	7.032,3 cA	6.830,4 bA	6.931,4 c
Jmen	3m51	6.904,8 cA	6.931,1 bA	6.918,0 c
Advanta	ADV 9434 PRO2	6.851,8 cA	6.921,2 bA	6.886,5 c
Biomatrix	BM 815	7.024,3 cA	6.544,6 bA	6.784,5 c
Balu	787	6.440,8 dA	7.106,1 bA	6.773,4 c
Advanta	PAC 105	6.341,6 dA	6.977,7 bA	6.659,7 c
Balu	297	6.762,8 cA	6.371,1 cA	6.567,0 c
Biogene	BG 7037 HX	6.033,8 dA	7.025,4 bA	6.529,6 c
Macro Seed	SZ 7030 VIP3	5.913,8 dB	7.005,1 bA	6.459,4 c
Jmen	4m50	6.163,0 dA	6.736,7 bA	6.449,9 c
Macro Seed	7G17 VIP	6.025,4 dA	6.541,3 bA	6.283,4 d
Dekalb	DKB 177 RR2	6.289,0 dA	6.134,3 cA	6.211,6 d
Biomatrix	BM 812 PRO2	6.092,0 dA	5.991,1 cA	6.041,6 d
Balu	198	5.901,8 dA	6.107,4 cA	6.004,6 d
Balu	332	5.765,4 dA	5.629,6 cA	5.697,5 d
Balu	293	5.228,6 dA	5.733,0 cA	5.480,8 d
Balu	445	6.033,6 dA	4.917,1 cB	5.475,4 d
	Лédia	7.236,2 A	7.286,0 A	7.261,1
	de Variação (%)	•	10,5	•

^{*}As médias seguidas pela mesma letra maiúscula na linha e minúscula na coluna não diferem estatisticamente entre si. Foi aplicado o Teste de Skott-Knott ao nível de 5% de probabilidade. ns – não significativo.

Tabela 7. Diferença de produtividade em função dos híbridos e dos níveis de tecnologia empregados. Fundação Rio Verde, 2016.

Tratamentos		Produtividade (sc ha ⁻¹)		-
Empresa	Híbridos	Alta Tecnologia	Média Tecnologia	Diferença
Santa Helena	2B647 PW	156,6	141,9	+14,7
Morgan	MG 699 PW	154,2	135,2	+19,0
Morgan	MG 580 PW	150,8	130,5	+20,3
Dow	DS 2505 PW	145,9	144,1	+1,8
Dow	2B 610 PW	143,5	132,5	+11,0
Morgan	MG 744 PW	143,1	147,1	-4,0
Coodetec	CD 3612 PW	139,0	136,1	+2,9
Dow	2B810 PW	137,5	127,6	+9,9
Dow	2B633 PW	136,0	134,2	+1,8
Syngenta	Formula Viptera	135,5	134,3	+1,2
LG	LG 3055 PRO	134,9	135,9	-1,0
Biogene	BG 7439 HX	134,7	134,5	+0,2
Dekalb	DKB 290 PRO3	131,2	128,4	
			•	+2,8
Morgan	MG 652 PW	128,6	129,9	-1,3
Coodetec	CD 3775 PW	127,8	121,7	+6,1
Jmen	2m88	127,4	119,6	+7,8
Agroceres	AG 8061 PRO2	126,9	133,2	-6,3
Agroceres	AG 7088 PRO3	126,5	137,7	-11,2
Syngenta	Syn 5T78 VIP3	126,1	140,2	-14,1
Agroeste	AS 1656 PRO3	123,0	122,3	+0,7
LG	LG 6038 PRO2	122,1	114,5	+7,6
Santa Helena	SHS 7930 PRO2	121,6	116,2	+5,4
Jmen	2m60	120,7	112,1	+8,6
LG	LG 6033 PRO2	120,5	121,6	-1,1
Jmen	1m3m40	120,4	111,0	+9,4
Biogene	BG 7542 HX	120,1	130,2	-10,1
Dekalb	DKB 390 PRO2	118,8	117,7	+1,1
Balu	434	117,2	113,8	+3,4
Biomatrix	BM 815	117,1	109,1	+8,0
Agroceres	AG 8088 PRO2	116,5	123,5	-7,0
Jmen	3m51	115,1	115,5	-0,4
Dow	2A401 PW	114,9	127,4	-12,5
Jmen	2m77	114,6	118,9	-4,3
Advanta	ADV 9434 PRO2	114,2	115,4	-1,2
Agroeste	AS 1633 PRO2	113,0	137,2	-24,2
Jmen	2m80	112,9	120,7	-7,8
Balu	297	112,7	106,2	+6,5
Balu	787	107,3	118,4	-11,1
Advanta	PAC 105	105,7	116,3	-10,6
Dekalb	DKB 177 RR2	104,8	102,2	+2,6
Syngenta	Supremo Viptera	104,5	128,8	-24,3
Jmen	4m50	102,7	112,3	-9,6
Biomatrix	BM 812 PRO2	101,5	99,9	+1,6
Balu	445	100,6	82,0	+18,6
Biogene	BG 7037 HX	100,6	117,1	-16,5
Macro Seed	7G17 VIP	100,4	109,0	-8,6
Macro Seed	SZ 7030 VIP3	98,6	116,8	-8,6 -18,2
			•	•
Balu	198	98,4	101,8	-3,4
Balu	332	96,1	93,8	+2,3
Balu	293	87,1	95,6	-8,5
P	Иédia	120,6	121,4	-0,8

Considerações Finais

- A população final de plantas apresentou diferença estatística entre os híbridos e entre os níveis de tecnologia empregados para alguns híbridos, porém as diferenças observadas são pequenas, não apresentando influência direta na produtividade do material, ou seja, onde é observada uma maior população de plantas não apresentou necessariamente uma maior produtividade, na média geral não foi observada diferença estatística entre os níveis de tecnologia empregados para a população final de plantas.
- Entre os híbridos testados somente o PAC 105 e o BM 815 responderam estatisticamente ao maior aporte de nutrientes para a massa de mil grãos, e os híbridos 2m60,

SZ 7030 VIP3 e Supremo Viptera apresentaram resposta positiva para a Média Tecnologia empregada no ensaio.

- A produtividade média entre os níveis de adubação empregados não apresentou diferença estatística, porém alguns materiais apresentaram diferença estatística entre os níveis de tecnologia empregados, sendo alguns mais responsivos a Alta Tecnologia e outros a Média Tecnologia. Os materiais que apresentaram uma diferença acima de 10 sc ha⁻¹ a favor da Alta Tecnologia foram o MG 580 PW, MG 699 PW, 445, 2B647 PW, 2B 610 PW com respectivamente um ganho de 20,3 sc ha⁻¹, 19,0 sc ha⁻¹, 18,6 sc ha⁻¹, 14,7 sc ha⁻¹ e 11,0sc ha⁻¹, e os materiais que apresentaram um melhor rendimento quando empregado a Média Tecnologia foram o Supremo Viptera, AS 1633 PRO2, SZ 7030 VIP3, BG 7037 HX, Syn 5T78 VIP3, 2A401 PW, AG 7088 PRO3, 787, PAC 105 e BG 7542 HX com respectivamente um ganho de 24,3 sc ha⁻¹, 24,2 sc ha⁻¹, 18,2 sc ha⁻¹, 16,5 sc ha⁻¹, 14,1 sc ha⁻¹, 12,5 sc ha⁻¹, 11,1 sc ha⁻¹, 10,6 sc ha⁻¹ e 10,1 sc ha⁻¹.
- Certamente o fator climático neste ano agrícola apresentou grande influência sobre a produtividade da cultura devido à baixa pluviosidade e má distribuição das chuvas, esse foi o fator limitante a uma melhor resposta da cultura ao maior aporte de adubação.

Referências Bibliográficas

MARTINEZ, H.E.P.; CARVALHO, J.G.; SOUZA, R.B. Diagnose foliar. In: RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ V., V.H. (eds.). **Recomendações para o uso de corretivos e fertilizantes em Minas Gerais**. 5ª Aproximação. Viçosa: UFV, 1999. p. 143-168.

FERREIRA, DANIEL FURTADO. SISVAR: **Um programa para análises e ensino de estatística**. Revista Symposium (Lavras), v.6, p.36-41, 2008.

Boletim Técnico Safra 2015/16 e Segunda Safra 2016

Fundação de Pesquisa e Desenvolvimento Tecnológico Rio Verde Rodovia MT 449 – KM 08 – Caixa Postal 159
CEP: 78.455-000 – Lucas do Rio Verde – MT fundacao@fundacaorioverde.com.br
www.fundacaorioverde.com.br
Telefone: (65) 3549-1161

